

Анализ существующих моделей стресскоррозии магистральных газопроводов и определение критических условий зарождения и развития стресс-коррозионных трещин

Т.С. Есиев, лаборатория труб ООО «Газпром ВНИИГАЗ»

Электрохимические условия возникновения двух форм стресс-коррозии

Области существования двух форм стресс-коррозии на диаграммах «Потенциал (Е, В) – кислотность среды (рН)

Сопоставление основных условий протекания стресскоррозии при высоком pH и околонейтральном pH

Characteristic	Near-neutral pH SCC	High-pH SCC
Crack path and morphology	Transgranular (possible intergranular initiation), with evidence for extensive corrosion of the crack walls	Intergranular, with tight, narrow cracks
Electrolyte	Dilute HCO ₃ solution (of the order of a 1-10 mM), with a pH in the range 5.5 to 7.5	Concentrated $CO_3^{2^*}/HCO_3^{-1}$ solution (0.1 to >1.0 mol·dm ⁻³), with a pH > 9.3
Potential	Potentials corresponding to E_{CORR} in anaerobic environments (-0.685 to -0.715 V_{SCE})	Occurs in a specific range of potentials which is temperature dependent (-0.525 to -0.675 V _{SCE} at room temperature)
Temperature	No apparent effect of temperature	Crack growth rate increases exponentially with temperature with an activation energy of ~40 kJ/mol
Loading conditions	Requires cyclic loading, crack growth rate is a function of maximum stress, range of stress during cyclic loading, and loading frequency	Cyclic loading promotes film rupture, cracking dependent on crack-tip strain exceeding critical strain for slip/film rupture
Mechanism	Corrosion fatigue, but nature of corrosion component uncertain	Slip dissolution

Химические условия возникновения двух форм стресс-коррозии

КРН при высоком pH требует формирования FeCO3 на поверхности стали, и поэтому связано с образованием концентрированных растворов CO3-2 / HCO3- (> 1 H, 58 г/л в Na2CO3) и pH> 9,0. FeCO3 образуется в узком диапазоне потенциалов от -0.75 V <Eoff <- 0,60 B, где она сосуществует с Fe3O4

КРН при нейтральном pH происходит, как правило, в сильно разбавленных электролитах, содержащих 1-10-10-3 моль/дм-3 HCO3 на поверхности стали и при наличии растворенного CO2. Эти растворы характеризуются значениями pH в диапазоне 5,5...7,5.

Сопоставление основных условий протекания двух форм стресс-коррозии

Характеристика	КРН в средах с нейтральным рН	КРН в средах с высоким рН
Водородный показатель рН	6,57,5	910
Характер растрескивания	транскристаллитный	межкристаллитный
Наличие колоний трещин	да	да
Коррозия на поверхности трубы	иногда	как правило, отсутствует
Наличие карбоната железа и магнетитовой пленки	да	да
Потенциал	потенциал свободной коррозии	-720 мВ
Диапазон потенциалов	вероятно более 100 мВ	узкий (менее 100 мВ)
Влияние температуры	не установлено	рост с повышением температуры

Электрохимические реакции в грунтовом и подпленочном электролитах

Реакции, которые происходят на поверхности Fe при температурах свыше 40 ° С и (Еогг) потенциале ниже -1.1 V :

 $H2O + e = \frac{1}{2}H2 + OH$ -

В условиях неполной катодной защиты (Eoff между -0,75 В / -0,60 В) бикарбонаты/карбонаты, возникающие в результате реакций, могут привести к образованию FeCO3.

Реагенты в этих реакциях, угольная кислота и бикарбонаты, получают путем реакции между СО2, содержащейся в дождевой воде и карбонатов в почве или при распаде органического вещества и почвы, богатой карбонатами. Производство НСОЗ- объясняет появление растворимых бикарбонатов, таких как натрий и калий бикарбонатов, которые были найдены на трубопроводах в зонах КРН. Они часто считаются индикаторами возможного КРН

OH- получают путем реакции [3] приводит к образованию частично растворимых бикарбонатов и карбонатов, нерастворимых в трещинах, в соответствии со следующими реакциями

- 1. Инкубационный период зарождения рассеянных на поверхности трубы микротрещин
- 2. Медленное подрастание микротрещин и их слияние в макротрещины
- 3. Ускоренное развитие трещин с постоянной скоростью в течение длительного времени
- 4. Нестабильный рост образовавшейся магистральной трещины с последующим разрывом трубы

Сценарий развития стресс-коррозии

Факторы системы «Металл-Среда-Напряженное состояние»

Схема процесса разрушения защитной пленки или модель slip-растворения по Паркинсу (1993)

Деформационное поведение материалов в условиях длительного нагружения

Кривая ползучести:

 ϵ_0 – мгновенная деформация; t_R – время до разрушения; d ϵ /dt – скорость деформации, которая на установившейся стадии – постоянна

Обеспечение проекта Бюджета 2016 г. по состоянию на 11.03.2016

Перечень встречающихся в трубах дефектов формы:

- смещения кромок в сварном шве; - угловатость или вогнутость в зоне сварки; - места овализации сечения и т.п.

 контур идеальной оболочки; 2 - фактический профиль сечения трубы; R₀ - номинальный радиус кривизны; R₁ - радиус кривизны в зоне плоской вмятины; I - плоская вмятина Рисунок 1 - Геометрические параметры сечения (а) и силовые факторы (б) в элементе цилиндрической оболочки с «плоской вмятиной»

С ГАЗПРОМ в н и и г а з

Модели образования и роста трещин в металле под воздействием водорода

Схема образования микротрещины (модель Зинера-Стро): σ - внешние растягивающие напряжения; т*eff - касательные напряжения*, которые действуют в плоскости скольжения дислокаций; *L* - длина субмикротрещины;

N - *общее количество краевых* дислокаций в плоском скоплении; *n* - *количество дислока*ций, слившихся в субмикротрещину; *B* - *модуль вектора* Бюргерса

Механизм роста трещины: а - вязкий; б - квазихрупкий; в, г - межкристаллитный

Схема зарождения, роста и слияния микропор при вязком разрушении металла

Изменение во времени напряжений, деформаций и скорости ползучести в зоне дефекта формы трубы при длительной эксплуатации газопровода

σ_i, σ₀ - текущее и начальное напряжение в зоне дефекта формы;

٤i, ٤0 - текущее и предельное
значение накопленной
пластической деформации;

 $\dot{{m \epsilon}}_i, \, {m \epsilon}_{\pi op}^{\, }$ - текущее и пороговое значение скорости ползучести;

τ_b, **τ**_c - различное время предварительной наработки газопровода до воздействия коррозионной среды на металл труб;

τе, τf - время до зарождения трещины при воздействии коррозионной среды на металл с начала эксплуатации газопровода и после предварительной наработки соответственно

Структурная схема оптимизации технологического процесса формовки труб

1 - лазерная сканирующая измерительная система; 2 - технологические операции формовки; 3 - технологическое оборудование; Обозначения: ТП - технологический процесс; ПЛ - прокатный лист; ФИ - формующий инструмент; СД - триангуляционный сенсорный датчик; БД - база данных

Лазерный сканирующий комплекс контроля формы трубы

1 - триангуляционный сенсорный датчик; 2 - восьмилучевая несущая платформа;
3 - система обработки и визуализации данных

СПАСИБО ЗА ВНИМАНИЕ