

### **МЕЖДУНАРОДНЫЙ** НАУЧНО-ПРАКТИЧЕСКИЙ СЕМИНАР

ПОВЫШЕНИЕ НАДЕЖНОСТИ МАГИСТРАЛЬНЫХ ГАЗОПРОВОДОВ, ПОДВЕРЖЕННЫХ КОРРОЗИОННОМУ РАСТРЕСКИВАНИЮ ПОД НАПРЯЖЕНИЕМ

### круглый стол



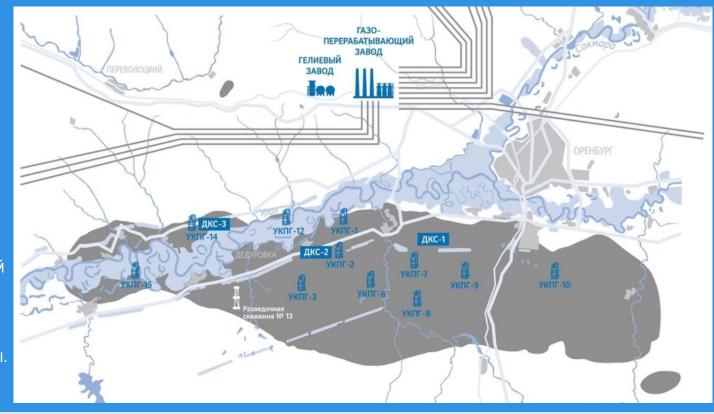
17-21 октября 2022 г.

г. Кисловодск



# ОБЕСПЕЧЕНИЕ ПРОТИВОКОРРОЗИОННОЙ ЗАЩИТЫ ПРОМЫСЛОВЫХ ТРУБОПРОВОДОВ ОРЕНБУРГСКОГО НГКМ

### Доклад


Начальника Службы управления техническим состоянием и целостностью технологического оборудования и трубопроводов инженерно-технического центра (СУТЦ ИТЦ) ООО «Газпром добыча Оренбург» Ерхова Алексея Юрьевича



# ООО «Газпром добыча Оренбург» — промышленный комплекс Российской Федерации

#### Основные виды деятельности:

- добыча газа, конденсата и нефти;
- подготовка углеводородного сырья, транспорт газа конденсата, нефти и продуктов их переработки;
- поиск и разведка новых месторождений нефти и газа;
- обеспечение производственной и экологической безопасности при эксплуатации опасных производственных объектов;
- мониторинг окружающей среды.





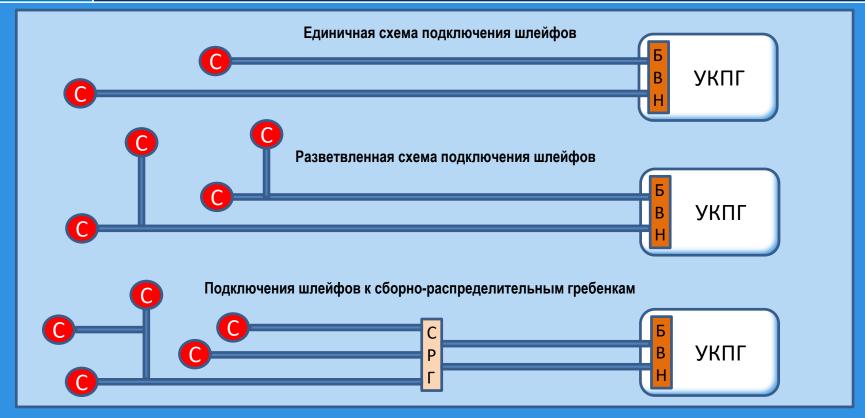
# Компонентный состав пластового газа ОНГКМ и содержание коррозионно-агрессивных компонентов в промысловых средах ГПУ

#### Компонентный состав пластового газа ОНГКМ

| метан       | этан                          | пропан                        | изобутан                                    | н-бутан                                     | изопентан                                   | н-пентан                                    | гексан                         |  |  |
|-------------|-------------------------------|-------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|--------------------------------|--|--|
| CH₄         | C <sub>2</sub> H <sub>6</sub> | C <sub>3</sub> H <sub>8</sub> | <sub>i</sub> C <sub>4</sub> H <sub>10</sub> | <sub>n</sub> C <sub>4</sub> H <sub>10</sub> | <sub>i</sub> C <sub>5</sub> H <sub>12</sub> | <sub>n</sub> C <sub>5</sub> H <sub>12</sub> | C <sub>6</sub> H <sub>14</sub> |  |  |
| мол. доля % |                               |                               |                                             |                                             |                                             |                                             |                                |  |  |
| 84,37       | 3,8                           | 1,64                          | 0,29                                        | 0,57                                        | 0,18                                        | 0,18                                        | 0,32                           |  |  |

#### Содержание коррозионно-агрессивных компонентов в промысловых средах ГПУ

| Природный газ                   |                                 | Водомет             | ганольная смесь                              | Газовый конденсат         |                                 |                                 |
|---------------------------------|---------------------------------|---------------------|----------------------------------------------|---------------------------|---------------------------------|---------------------------------|
| Н <sub>2</sub> S, %<br>молярный | CO <sub>2</sub> , %<br>молярный | Ph среды,<br>ед. ph | Общая<br>минерализация,<br>г/дм <sup>3</sup> | Хлориды,<br>%<br>массовый | H <sub>2</sub> S, %<br>массовый | CO <sub>2</sub> , %<br>массовый |
| до 6                            | до 2                            | 5,0-8,5             | До 280                                       | До 95                     | 0,41-1,89                       | 0,06-0,27                       |



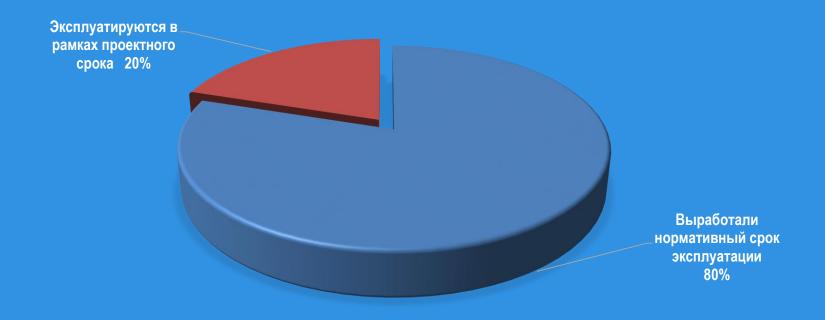

## Состав и общая протяженность промысловых трубопроводов ООО «Газпром добыча Оренбург» по состоянию на 01.01.2022

| Наименование                                      | Количество |
|---------------------------------------------------|------------|
| Газовые и нефтяные шлейфы, коллекторы, км         | 2241,9     |
| Метанолопроводы от УКПГ-до скважин, км            | 2289,5     |
| Газопроводы очищенного газа к скважинам, км       | 70,4       |
| Газопроводы активного газа от скважин доноров, км | 60,3       |
| Трубопроводы пластовой воды, км                   | 124        |
| Общая протяженность промысловых трубопроводов, км | 4786,1     |



### Схемы подключения шлейфов при сборе пластовой продукции






### Требования, предъявляемые к материалу труб шлейфов

- Ограничение по содержанию углерода и марганца C<0,24%;</p>
- Эквивалент углерода ≤ 0,38 %;
- ➤ Низкие содержание вредных примесей: S < 0,01%; P< 0,015%;</p>
- > Однородная мелкозернистая структура;
- $\triangleright$  Твердость ≤ 20HRC;
- Ударная вязкость > 30Дж/см²;
- Стойкость к коррозионному растрескиванию в среде NACE при пороговых напряжениях ≥ 0,8σ<sub>т</sub>



### Сроки службы промысловых трубопроводов





### Нормативные документы в области противокоррозионной защиты

#### Нормативные документы по электро-химической защите:

- 1. ГОСТ Р 51164-98. Трубопроводы стальные магистральные. Общие требования к защите от коррозии.
- 2. ГОСТ 9.602-2016. Единая система защиты от коррозии и старения. Сооружения подземные. Общие требования к защите от коррозии.
- 3. СТО Газпром 9.0-001-2018. Защита от коррозии. Основные положения.
- 4. СТО Газпром 9.2-002-2019. Электрохимическая защита от коррозии. Основные требования.
- <u>5. Р Газпром 9.2-025-2013</u>. Правила эксплуатации средств электрохимической защиты подземных сооружений.
- 6. СТО Газпром 2-5.1-632-2012. Оборудование систем противокоррозионной защиты. Порядок проведения технического обслуживания и ремонта.

#### Нормативные документы по ингибиторной защите:

- СТО Газпром 9.3-011-2011. Защита от коррозии. Ингибиторная защита от коррозии промысловых объектов и трубопроводов.
  Основные требования.
- 2. СТО Газпром 9.3-007-2-10. Методика лабораторных испытаний ингибиторов коррозии для оборудования добычи, транспортировки и переработки коррозионно-активного газа.
- 3. СТО Газпром 13-53-2019. Ингибиторная защита от коррозии и коррозионный мониторинг промысловых объектов и соединительных газопроводов неочищенного газа ООО «Газпром добыча Оренбург».
- 4. СТО Газпром 9.3-028-14. Правила допуска ингибиторов коррозии для применения в ОАО «Газпром».



### Оценка состояния противокоррозионной защиты (ПКЗ) промысловых трубопроводов ООО «Газпром добыча Оренбург»





# Результаты оценки состояния ЭХЗ промысловых трубопроводов в 2021 году

- Для обеспечения ЭХЗ используются 244 установок катодной защиты и 6808 контрольно измерительных пункта.
- Проведены коррозионные обследования 569,85 км промысловых трубопроводов.
  - эащищённость промысловых трубопроводов ООО «Газпром добыча Оренбург» средствами ЭХЗ по протяжённости составляет 99,99%, по времени 99,84%.
  - комплексный показатель защищенности (Пкпз) от коррозии для объектов ООО «Газпром добыча Оренбург» составил в 2021 0,997.

#### Причины необеспечения полной защищённости трубопроводов:

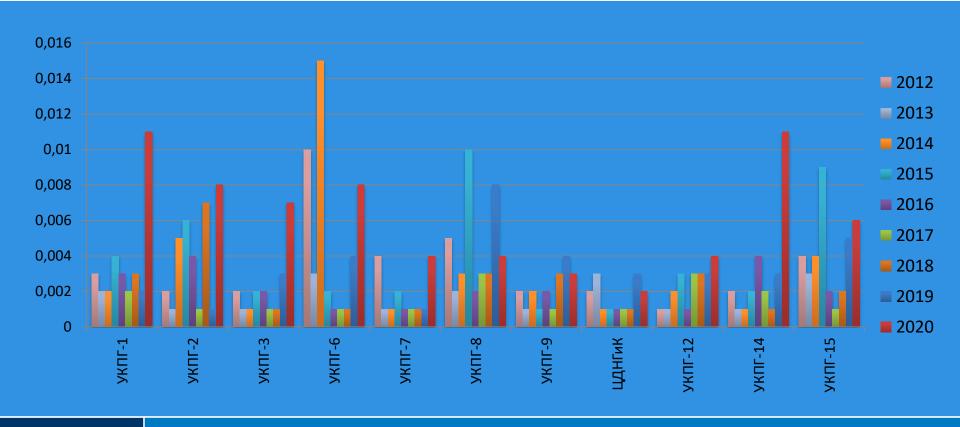
- > перерывы в электроснабжении;
- отключения средств ЭХЗ для проведения огневых работ;
- неудовлетворительное состояние изоляционного покрытия отдельных участков со сроком эксплуатации более 34 лет.



# Восстановление изоляционного покрытия промыслового трубопровода в шурфе



Общий объем ремонта изоляционных покрытий промысловых трубопроводов в 2021 году составил 328,93 м<sup>2</sup>.




## Результаты оценки эффективности ПКЗ в 2021 году по параметрам коррозионного мониторинга

- количество подаваемого в забой скважины ингибитора соответствует требованиям ТК ингибиторной защиты;
- скорость общей коррозии, рассчитываемая по потере веса образцов-свидетелей, размещенный в сепараторах 1й ступени составляет до 0,02 мм/год и не превышает максимально установленной в СТО Газпром 9.3-011-2011 - 0,1 мм/год;
- содержание ингибитора в средах в среднем составляет 300 мг/л, что соответствует установленным в технологических картах нормам;
- содержание ионов железа в средах в среднем 70 мг/л, что соответствует установленным в технологических картах нормам.



# Максимальные значения скоростей коррозии по образцам-свидетелям, мм/год





### Повреждения промысловых трубопроводов



Трещина в сварном шве. Шлейф 168х12 скв. 167, УКПГ- 6, сталь 12Х1МФ.

Сквозная язвенная коррозия. Шлейф 168х9 скв. 185д, УКПГ-2, сталь 20.





Механическое повреждение. Шлейф 168X12 скв 12014 УКПГ- 12.

Коррозионное повреждение. Шлейф 219X16 скв 239 УКПГ- 7.





### Этапы оценки дефектов промысловых трубопроводов

#### Этапы оценки дефектов промысловых трубопроводов

1 этап - оценка допустимости дефектов:

- продолжение эксплуатации;
- ремонт зачисткой механическим способом;
- замена катушкой.

Назначение типа ремонта в соответствии с СТО Газпром 2-2.3-137-2007 Инструкция по технологиям сварки при строительстве и ремонте промысловых и магистральных газопроводов. Часть II.

#### 2 этап - оценка прочности элемента с выявленным дефектом:

Минимальная измеренная толщина после проведения зачистки механическим способом должна быть не менее расчетной отбраковочной толщины по СП 284.1325800.2016 Трубопроводы промысловые для нефти и газа. Правила проектирования и производства работ.

#### 3 этап - оценка остаточного ресурса элемента с выявленным дефектом :

Расчёт остаточного ресурса элементов трубопроводов с выявленными повреждениями оценивается по критерию коррозии и изнашивания по методикам, приведенным в РД 09-102-95 Методические указания по определению остаточного ресурса потенциально опасных объектов, поднадзорных Госгортехнадзору России.



## Организационная структура СУТЦ в рамках обеспечения ПКЗ промысловых трубопроводов





### Выводы

- применение качественных материалов, стойких к СКРН;
- использование труб с толщиной стенки, рассчитанной с большим запасом прочности;
- входной контроль качества поступающих материалов;
- > применение специальных технологий проведения сварочно-монтажных работ;
- неразрушающий контроль и термическая обработка для снятия остаточных сварочных напряжений;
- проведение технического диагностирования и ЭПБ;
- применение ингибиторной защиты и ЭХЗ;
- контроль коррозионного состояния;
- своевременное выполнение регламентных и ремонтных работ

позволяют уже более 50 лет успешно обеспечивать в целом надежную и безопасную эксплуатацию промысловых трубопроводов ООО «Газпром добыча Оренбург».



# Спасибо за внимание!

#### Докладчик:

Ерхов Алексей Юрьевич Начальник СУТЦ ИТЦ ООО «Газпром добыча Оренбург»