

МЕЖДУНАРОДНЫЙ НАУЧНО-ПРАКТИЧЕСКИЙ СЕМИНАР

ПОВЫШЕНИЕ НАДЕЖНОСТИ МАГИСТРАЛЬНЫХ ГАЗОПРОВОДОВ, ПОДВЕРЖЕННЫХ КОРРОЗИОННОМУ РАСТРЕСКИВАНИЮ ПОД НАПРЯЖЕНИЕМ

ПЛЕНАРНОЕ ЗАСЕДАНИЕ

17-21 октября 2022 г.

г. Кисловодск

ПОВЫШЕНИЕ НАДЕЖНОСТИ МАГИСТРАЛЬНЫХ ГАЗОПРОВОДОВ, ПОДВЕРЖЕННЫХ КОРРОЗИОННОМУ РАСТРЕСКИВАНИЮ ПОД НАПРЯЖЕНИЕМ

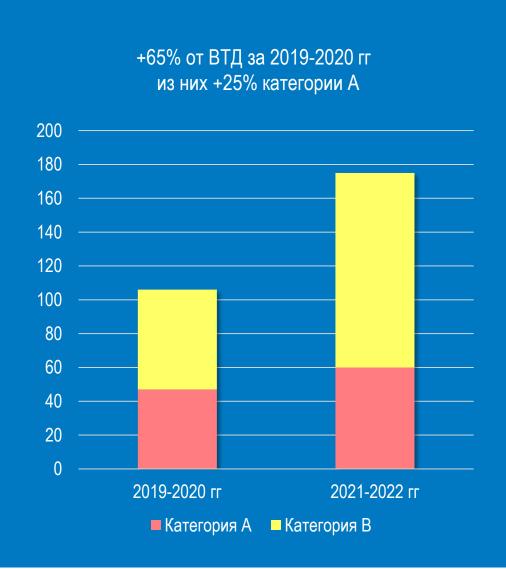
ЭКПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ РЕСУРСА ТРУБ МАГИСТРАЛЬНЫХ ГАЗОПРОВОДОВ С ПОПЕРЕЧНЫМИ СТРЕСС-КОРРОЗИОННЫМИ ТРЕЩИНАМИ

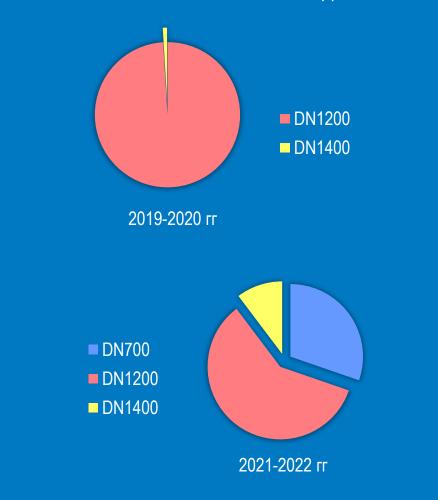
Гайсин Венер Вазирович

Инженер СУТСЦ ГТС ИТЦ ООО «Газпром трансгаз Уфа»

Уаман де лос Эрос Федерико Федерикович

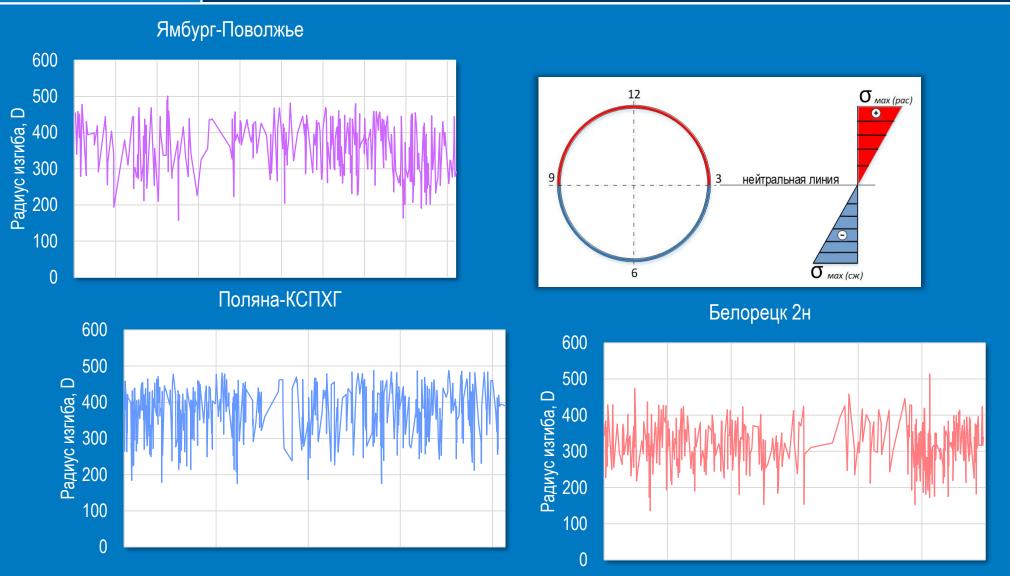
Главный инженер – заместитель начальника ИТЦ ООО «Газпром трансгаз Уфа»


ОБЩАЯ СТАТИСТИЧЕСКАЯ ИНФОРМАЦИЯ ПО ПРОТЯЖЕННОСТИ ГАЗОПРОВОДОВ ООО «ГАЗПРОМ ТРАНСГАЗ УФА»

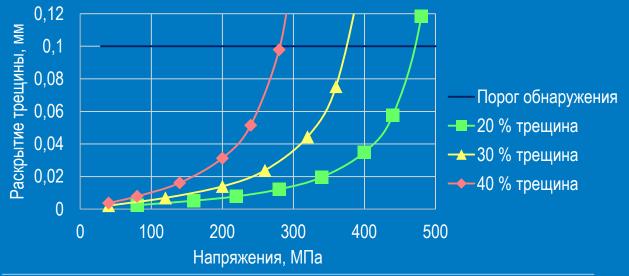


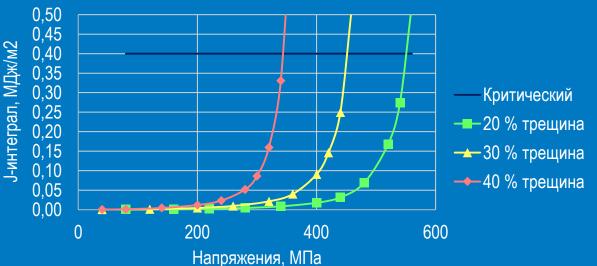
ВЫЯВЛЯЕМОСТЬ ДЕФЕКТОВ КРН СРЕДСТВАМИ ВТД

СТАТИСТИКА ВЫЯВЛЯЕМОСТИ ПО ДИАМЕТРАМ



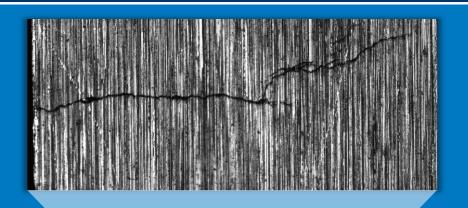
ОПРЕДЕЛЕНИЕ ЗОН С ВОЗМОЖНЫМИ СТРЕСС-КОРРОЗИОННЫМИ ТРЕЩИНАМИ НА ОСНОВЕ РЕЗУЛЬТАТОВ ВТД


ВЛИЯНИЕ УПРУГО-ПЛАСТИЧЕСКИХ ИЗГИБОВ НА ОБАЗОВАНИЕ КРН



В зоне растяжения упруго-пластического изгиба наиболее вероятно возникновение трещиноподобных дефектов. Напротив, в зоне сжатия не происходит развитие даже имеющихся дефектов.

УРОВЕНЬ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ, НЕОБХОДИМЫЙ ДЛЯ ДОСТОВЕРНОЙ ВЫЯВЛЯЕМОСТИ ТРЕЩИН


Сравнивая уровень НДС, при котором поперечные трещины могут быть выявлены современными средствами ВТД с тем, при котором происходит разрушение стенки трубы, видно, что имеющейся запас прочности (пластичности) труб теоретически позволяет предотвращать аварийные ситуации

ОЦЕНКА ЦИКЛИЧЕСКОЙ ВЫНОСЛИВОСТИ ТРУБ С ПОПЕРЕЧНЫМ КРН

2 образца во время испытаний выдерживали приложенную нагрузку более 20 тыс. циклов. Образцы, вырезанные вдоль продольного сварного соединения, оказались более выносливыми в сравнении с образцами, вырезанными из околошовной зоны.

Результаты циклических испытаний			
№ п/п	Относительная глубина, %	Максимальные напряжения, МПа	Циклы
1	30	189,06	549,25
2	32,23	185,42	3046
3	35,45	180,21	4318
4	36,46	179,17	1900,25
5	37,8	177,08	995,25
6	39,73	173,96	2535,75
7	49,12	162,5	291,25
8	49,36	159,38	1002,25
9	57,07	138,54	2289,25
10	61,67	126,04	5284,25
11	64,48	116,67	756

выводы

- 1) Остается актуальной необходимость повышения точности идентификации выявляемых при ВТД дефектов, их типов и параметров для оптимизации затрат на эксплуатацию, а также обоснованного выбора методов ремонта дефектных участков газопроводов;
- 2) Имеющейся запас прочности (пластичности) труб теоретически позволяет предотвращать аварийные ситуации. Однако стоит отметить, что ресурс газопроводов со стресс-коррозионными трещинами на сегодняшний день является малоизученным вопросом, т.е. на практике нет однозначного ответа за какой период времени трещины с глубиной 20% от толщины стенки трубы (порог обнаружения средств ВТД) могут достигнуть критической глубины, достаточной для разрушения трубы;
- 3) Для обеспечения надежности магистральных газопроводов, подверженных образованию поперечных трещин, необходимо продолжить совершенствование методологических (определение ресурса) и технических (средства ВТД) аспектов данного вопроса.

ПОВЫШЕНИЕ НАДЕЖНОСТИ МАГИСТРАЛЬНЫХ ГАЗОПРОВОДОВ, ПОДВЕРЖЕННЫХ КОРРОЗИОННОМУ РАСТРЕСКИВАНИЮ ПОД НАПРЯЖЕНИЕМ

СПАСИБО ЗА ВНИМАНИЕ!

Гайсин В.В.

Инженер службы по управлению техническим состоянием и целостностью ГТС

Инженерно-технический центр ООО «Газпром трансгаз Уфа» газ. тел. (733) 62-399

Уаман де лос Эрос Ф.Ф.

Главный инженер – заместитель начальника ИТЦ

Инженерно-технический центр ООО «Газпром трансгаз Уфа» газ. тел. (733) 62-202