

МОДЕЛИРОВАНИЕ И ЭКСПЕРИМЕНТАЛЬНАЯ ПРОВЕРКА РАСПРЕДЕЛЕНИЯ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ТРУБ И ЕГО ВЛИЯНИЕ НА ВОЗНИКНОВЕНИЕ И РОСТ ДЕФЕКТОВ КРН

ПОГУЛЯЕВ СТЕПАН ИВАНОВИЧ

Заместитель начальника лаборатории исследования и профилактики разрушения производственных объектов

КНТЦ управления техническим состоянием и целостностью ПО ООО «Газпром ВНИИГАЗ»

VI Научно-практический семинар «Повышение надежности магистральных газопроводов, подверженных коррозионному растрескиванию под напряжением». г.Кисловодск, 17-21 октября 2022 года

Распределение компонентов НДС в стенке трубы

Моделирование и экспериментальная проверка распределения напряженно-деформированного состояния труб и его влияние на возникновение и рост дефектов КРН

АЗПРОМ

Методы формовки сварных труб

Мокроусов, В. И. Прочность стальных труб при дефекте внешней фаски продольного сварного шва/ В. И. Мокроусов. // Молодой ученый. — 2015. — № 20 (100). — С. 44-49.
За - Боклаг Н.Ю. Совершенствование процесса и оборудования для повышения качества формообразования труб большого диаметра на прессе предварительной формовки: дис. ... канд. техн. наук:
Фолодой ученый федеральный университет имени первого Президента России Б.Н.Ельцина Екатеринбург, 2017 - 128 с.

Моделирование и экспериментальная проверка распределения напряженно-деформированного состояния труб и его влияние на возникновение и рост дефектов КРН

ГАЗПРОМ вниигаз

Моделирование напряженнодеформированного состояния в трубах

ГАЗПРОМ В Н И И ГАЗ Моделирование ЈСОЕ формовки трубы

Измерена кривизна с шагом по окружности со стороны внутренней поверхности

Локальный радиус кривизны $\rho = \frac{L^2}{8\cdot\Delta}$

Изгибные напряжения

$$\sigma_{_{\mathrm{H}\mathrm{3}\mathrm{\Gamma}}} = \frac{E \cdot t \cdot}{2 \cdot (\rho_{_{\mathrm{K}}} - \rho_{_{\mathrm{H}}}) \cdot (1 - \mu^2)}$$

Кольцевые напряжения

$$\sigma_{\kappa \downarrow} = \frac{p \cdot \rho}{t}$$

Моделирование напряженного состояния по данным измерений локальной кривизны

Моделирование и экспериментальная проверка распределения напряженно-деформированного состояния труб и его влияние на возникновение и рост дефектов КРН

ГАЗПРОМ

ГАЗПРОМ в н и и г а з

Определение остаточных напряжений методом разрезки колец

$$\sigma_{\text{oct}}^{\text{cp}} = \frac{E \cdot t}{(1 - \mu^2) \cdot 2 \cdot R_0^2 \cdot \pi} \left(\frac{\delta_{\text{r}}}{2} - \delta_{\text{B}} \sin(\alpha_{\sigma}) \right)$$

- $\sigma_{\rm oct}^{\rm cp}$ средние по окружности изгибные остаточные напряжения, МПа $\delta_{\rm r}$ горизонтальное расхождение кольца, м
- $\delta_{\scriptscriptstyle \mathrm{B}}$ вертикальное расхождение кольца, м
- Е модуль Юнга, МПа
- *t* толщина стенки трубы, м

*R*₀ - радиус срединой поверхности разрезанного кольца, м

Колец Моделирование остаточных напряжений при разрезке колец

Выполнен конечно-элементный анализ на стадии смыкания кромки труб, вырезки кольца из трубы и его разрезки

Подтверждена расчетная зависимость

$$\sigma_{\text{oct}}^{\text{cp}} = \frac{E \cdot t}{(1 - \mu^2) \cdot 2 \cdot R_0^2 \cdot \pi} \left(\frac{\delta_{\text{r}}}{2} - \delta_{\text{B}} \sin(\alpha_{\sigma}) \right)$$

Продольные напряжения вдоль образующей

[mm]

240,

300.

200.

120

80

Моделирование и экспериментальная проверка распределения напряженно-деформированного состояния труб и его влияние на возникновение и рост дефектов КРН

30,3

25,

20

15,

10

-1,319

[MPa]

Экспериментальная проверка

Оценка остаточных изгибных напряжений

Моделирование и экспериментальная проверка распределения напряженно-деформированного состояния труб и его влияние на возникновение и рост дефектов КРН

АЗПРОМ

Оценка эксплуатационных кольцевых напряжений

Моделирование и экспериментальная проверка распределения напряженно-деформированного состояния труб и его влияние на возникновение и рост дефектов КРН

АЗПРОМ

вниига 3

Данные тензометрии при стендовых испытаниях в 2016 году (труба Ø1420×16,5)

Данные тензометрии подтвердили локализацию высоких напряжений на участках с максимальным радиусом (более пологие участки)

Средство измерения	Локальный радиус, мм		Кольцевые напряжения, МПа		Отилонение
			Фактические	Теоретические	Отклонение
Одношовная труба Оптоволоконная система Sm125	Min	631	225 (0,56 σ _{0,2})	265	- 15%
	Nom	707	291 (0,72 σ _{0,2})	294	- 1%
	Max	825	342 (0,85 σ _{0,2})	347	- 1%
Двухшовная труба Тензометрическая станция UCAM-60В	Min	611	193 (0,36 σ _{0,2})	266	- 27%
	Nom	712	338 (0,63 σ _{0,2})	331	+ 2%
	Max	895	406 (0,75 σ _{0,2})	412	-1%

ГАЗПРОМ В Н И И ГАЗ СОДУ (труба Ø1020×15,3 мм, X80)

Отклонение от теоретических: Rmax – плюс 5,7% Rnom – плюс 2,3% Rmin – минус 10%

14

ГАЗПРОМ В НИМГАЗ ОБЩАЯ ОЦЕНКА ОСТАТОЧНЫХ И ЭКСПЛУАТАЦИОННЫХ Напряжений

15

Оценка роста трещин КРН в условиях неравномерного распределения НДС

ГАЗПРОМ В Н И И ГАЗ В Н И И ГАЗ

Взаимосвязь напряженного состояния и трещиностойкости материала

Моделирование и экспериментальная проверка распределения напряженно-деформированного состояния труб и его влияние на возникновение и рост дефектов КРН

ГАЗПРОМ

Выводы

Напряженно-деформированное состояние (НДС) в трубах имеет неравномерное распределение как по толщине стенки так и по окружности трубы

Совокупность компонентов НДС может кратно увеличивать скорость роста трещин, что необходимо учитывать в модели роста трещин

Необходим статистический набор данных о распределении компонентов НДС в трубах различного типоразмера и производителей

Следует выполнить исследования зависимости послойной трещиностойкости металла труб различных производителей

Предложение в протокол: Дочерним газотранспортным обществам ПАО «Газпром» направить в ООО «Газпром ВНИИГАЗ» кольца труб различной конструкции и производителей диаметром от 530 до 1420 мм шириной не менее 500 мм из основного металла с дефектами КРН.

СПАСИБО ЗА ВНИМАНИЕ!

Погуляев Степан Иванович

Заместитель начальника лаборатории физико-химического моделирования и профилактики коррозионно-механического разрушения.

- Тел. (498) 456353
- S_Pogulyaev@vniigaz.gazprom.ru

