

Исследование влияния различных концентраций водорода на развитие эксплуатационных дефектов труб длительно эксплуатируемых газопроводов

Кашковский Р.В.

КНТЦ управления техническим состоянием и целостностью производственных объектов ООО «Газпром ВНИИГАЗ»

БНИИГАЗ ВЗАИМОСВЯЗЬ МОДЕЛЕЙ РАЗРУШЕНИЯ ТРУБ МГ

Программа создания корпоративного экспериментального комплекса для оценки работоспособности труб МГ с дефектами КРН и эффективности ремонтных технологий, утв. 07.12.2021 заместителем Председателя Правления ПАО «Газпром» - начальником Департамента 623 О.Е. Аксютиным.

Комплекс экспериментальных методов

Методы наводороживания стали

- катодная поляризация
- газофазное насыщение в автоклаве

Методы нагружения образцов

- статическое нагружение
- циклическое нагружение

Методы имитации дефектов

- питтинг (засверловка)
- усталостная трещина

Методы оценки скорости внедрения атомарного водорода в металл и концентраций водорода

- метод электрохимической десорбции
- метод послойного анодного растворения

Фрагменты труб МГ Ø 1420, толщина стенки 15,7 мм МГ «СРТО- Урал», Эксп. организация ООО «Газпром трансгаз Югорск» Изготовлены по ТУ 40/48/56-79-НС Категория прочности X70 Предел прочности - не менее 588 МПа Предел текучести - не менее 461 МПа Относительное удлинение - не менее 20%.

Химический состав стали

С	Si	Mn	S	Ρ	Cr	Ni	Cu	Nb	V	Ti	ΑΙ	Мо	Со
0,071	0,224	1,212	0,007	0,018	0,179	0,017	0,006	0,039	0,004	0,0005	0,015	0,013	0,007

Оценка содержания водорода в трубной стали Х70 Приповерхностная концентрация $C_s = \frac{i_{\infty}L}{--}$ FDі. мкА/см² lg Cs(H), (Свррм) 2,5 2 16,15 ppm $0 \rightarrow 1.1 \text{ MA/cm}^2$ $0 \rightarrow 1,5 \text{ MA/cm}^2$ 2 7,52 ppm pH 1,3 1,5 1,57 ppm pH 5,5 0 0,31 ppm 1 $0 \rightarrow 0,58 \text{ MA/cm}^2$ pH 7,0 -1 0,5 0,05 ppm

-2

-600

Bokris J.O.M. etc. Hydrogen Embrittlement and Hydrogen Traps // Journal of The Electrochemical Society. 1971. Vol. 118(7), p. 1114-1119.

4 0 0 0

2 000 Время, с

 $D = 6,3 \cdot 10^{-6}$ см²/с при pH 1,3 $D = 5,36 \cdot 10^{-7}$ см²/с при pH 7

3 0 0 0

Халдеев Г.В., Борисова Т.Ф. Водородопроницаемость металлов и сплавов в коррозионно-электрохимических процессах // Итоги науки и техники. Сер. Электрохимия, 1989, т.30. с. 3-54.

5 0 0 0

-1400

-1200

-1000

Екат, мВ

-800

0

0

1 0 0 0

С ГАЗПРОМ Оценка содержания водорода в трубной стали X70

Объемная концентрация $Cv = Q_H / nFV_M = \int I_{a(H)} dt - \int I_{a(\phi o H)} dt / nFV_M$

Белоглазов С.М. Об определении водорода в стали методом анодного растворения // Заводская лаборатория, 1961. Т. 27. С. 1468-1469.

Многостадийная кинетическая модель КРН

- Стадия «1» Инкубационный период до образования трещин
- Стадия «2» Образование, начальный рост и стабилизация трещин
- Стадия «3» Развитие индивидуальной трещины в колонии
- Стадия «4» Развитие магистральной трещины
- Точка Разрушения

Ryakhovskikh I.V. etc. Model of SCC and practical guidelines for pipelines operation // Engineering Failure Analysis. 2021. Vol. 121, p. 105134. Ryakhovskikh I.V. Regularities of the near-neutral pH stress corrosion cracking of gas pipelines // Vesty gasovoy nauki.2019. №3. p. 43-59.

Статическая нагрузка

Режимы испытаний: Нагрузка от 0 МПа до $\sigma_{0,2}$ Среда с pH 7,0 и 5,5 в т.ч. + 10 мМ тиомочевины Поляризация от Е_{корр} до -1440 мВ Содержание водорода от 0,05 до 3,8 ppm Дефекты Ø от 0,1 мм до 1,5 мм

За 60 сут испытаний не зафиксировано образование трещин

Циклическая нагрузка

Режимы испытаний: Нагрузка от 0 МПа до σ_{0,2} с *f* = 0,15 Гц Остальное – аналогично статике

Трещина на воздухе и в большинстве изученных сред образовывалась на 24 сутки. В среде с pH 5,5 + TM, E = -1300 мВ трещина образовалась на 6 сутки.

C_{CR} > 3,8 ppm

IM Скорость роста трещин КРН в трубной стали X70

СТО Газпром 2-5.1-1290–2023 Методы лабораторных испытаний металла труб МГ на КРН Murakami Y. Stress intensity factors handbook // New York: Pergamon. 1987. p.1464

Скорость роста трещин КРН в трубной стали X70 В НИИГАЗ

Циклическая нагрузка (стадия развития магистральной трещины)

Циклическая нагрузка (стадия развития магистральной трещины)

Нанесение надрезов

Выращивание трещины

при 5 МПа H₂ 72 ч

Поэтапное циклическое нагружение 0,8...0,9...1,0 от о_т по 10 тыс. циклов

СТО Газпром 2-5.1-1290–2023 Методы лабораторных испытаний металла труб МГ на КРН

Циклическая нагрузка (стадия развития магистральной трещины)

СТО Газпром 2-5.1-1290-2023 Методы лабораторных испытаний металла труб МГ на КРН

Оценка концентрации водорода в стали X70 в зависимости от P(H₂)

Отчет о НИР по дог. ДС 8063-623-21-2-РВ от 01.04.2022, этап 2 Drexler A. et al // International journal of hydrogen energy. 2022. Vol.47, p. 39639-39653. Golisch G. at al. // Journal of Pipeline Science and Engineering.2022. Vol. 2, p. 1-6. Trautmann A. et al // Materials. 2020. p.13.

Drexler A. et al // International Journal of hydrogen energy. 2022. Vol.47, p. 39639-39653.

С ГАЗПРОМ Модель роста трещин КРН на стали X70 в среде водорода Модель роста трещин КРН на стали X70 в среде водорода

$$\begin{cases} V_{1} = G_{e} \cdot (t)^{n-1}, & \text{или } t \leq 24 \text{ дня} \\ V_{2} = r \exp\left(-\frac{a}{m}\right) \cdot s, & \text{при } t > 24 \text{ дня } \text{и } a < a_{max} \text{ или } V_{2} > V_{3} \\ V_{3} = A_{st} \cdot \left(\frac{C}{C_{cr}^{st}}\right)^{p_{st}} \left[\left(\frac{K_{I,max} - K_{Iscc} \left(\frac{C}{C_{cr}^{st}}\right)^{-s_{st}}}{\left(\frac{C}{C_{cr}^{st}}\right)^{-k_{cf}} \cdot K_{IC} - K_{I,i,max}} \right) \right]^{B_{st}}, \\ = \begin{cases} \text{при } a \geq a_{max} \text{ или } V_{2} \leq V_{3} \text{ и } V_{3} > V_{4} \\ \\ V_{4} = A_{cf} \cdot \left(\frac{C}{C_{cr}^{cf}}\right)^{p_{cf}} \cdot \sum_{i=1}^{k} \left[N_{i} \cdot f_{i}^{\gamma} \left(\frac{\left(\Delta K_{I,i}^{\alpha} \cdot K_{I,i,max}^{\beta} - \Delta K_{I,th} \cdot \left(\frac{C}{C_{cr}^{cf}}\right)^{-s_{cf}}\right)}{\left(\left(\frac{C}{C_{cr}^{cf}}\right)^{-k_{cf}} \cdot K_{IC} - K_{I,i,max}}\right)} \right)^{B_{c}} \\ \\ \text{при } V_{3} \leq V_{4} \text{ и } a < a_{r} \end{cases}$$

Эмпирические коэффициенты, учитывающие влияния водорода на скорость роста трещины КРН зависят от C_{CR} : $p_{st}, s_{st}, k_{st} = 0$ при С $< C_{cr}^{st}$ (1,9 ppm) $p_{st}, s_{cf}, k_{cf} = 0$ при С $< C_{cr}^{cf}$ (0,26 ppm)

 $\frac{da}{dt}$

- 1. Исследования влияния различных концентраций водорода проведены на образцах трубной стали категории прочности X70, образцы вырезаны из фрагментов трубы МГ Ø 1420 x15,7 мм, на которой ранее были выявлены дефекты КРН.
- По мере увеличения кислотности среды с pH 7,0 до 1,3 коэффициент диффузии водорода возрастает с 5,36·10⁻⁷
 6,3·10⁻⁶ см²/с см²/с, а приповерхностная концентрация водорода C_s в стали при E_{кор} с 0,05 до 0,35 ppm.
 Катодная поляризация стали до -1,4 В позволяет достичь максимальных значений C_s, равных 0,31...16,15 ppm.
- 3. В рамках выполнения НИР экспериментально установлены значения критических (пороговых) концентрации водорода в стали, ускоряющие процессы разрушения:
 - > 3,8 ppm для стадии образования трещины из локального дефекта;
 - 1,9 ppm для стадии роста индивидуальной трещины в колонии;

0,26 ppm для стадии развития магистральной трещины.

- 4. Анализ полученных результатов показал, что при давлении газообразного водорода до 20 МПа и температурах, соответствующих условиям эксплуатации МГ, трубная сталь может наводороживаться до C = 1,4 ppm. Указанные C(H₂) в стали значительно ниже критической концентрации водорода, интенсифицирующей процесс роста индивидуальной трещины КРН в колонии трещин под действием статического нагружения трубы. Негативное действие водорода на рост дефектов КРН следует ожидать на стадии развития магистральной трещины КРН (с глубиной свыше 30%), растущей под действием циклических нагрузок, действующих на МГ, при содержании водорода от 30 % в газе при давлении эксплуатации до 14,7 МПа.
- 5. На основании результатов комплекса коррозионно-электрохимических и коррозионно-механических испытаний образцов трубной стали X70 разработана кинетическая модель роста дефектов КРН в условиях присутствия различных концентраций водорода в природном газе.

СПАСИБО ЗА ВНИМАНИЕ!