О ВЛИЯНИИ КРИСТАЛЛОГРАФИЧЕСКОЙ ТЕКСТУРЫ И ОСТАТОЧНЫХ НАПРЯЖЕНИЙ НА РАЗВИТИЕ ТРЕЩИН КРН В ТРУБАХ МАГИСТРАЛЬНЫХ ГАЗОПРОВОДОВ

проф. Ю.А. Перлович, проф. М.Г. Исаенкова, О.А. Крымская, Н.С.Морозов, Р.А.Минушкин НИЯУ МИФИ

> И.В. Ряховских ООО «Газпром ВНИИГАЗ»

разработка рекомендаций по учету количественных характеристик кристаллографической текстуры и остаточных напряжений в расчетноэкспериментальной модели коррозионного растрескивания под напряжением

Цель работы:

распространение транскристаллитной трещины по модели Коттрелла

Характер распространения трещин в различных трубах

Одношовные трубы

013 012 023

011

блокировка роста трещины при наличии послойной текстурной неоднородности

EBSD карта

Формирование послойной текстурной неоднородности в трубах МГ

Горячая прокатка стальных листов включает следующие механизмы развития текстуры:

- деформация аустенита (γ) и феррита (α)
- динамическая рекристаллизация аустенита и феррита
- фазовые превращения γ↔ α

Причины послойной текстурной неоднородности при горячей прокатке:

- неоднородность деформации по толщине листа
- градиент температуры по толщине листа
- насыщение поверхностного слоя примесями внедрения из атмосферы
- последующая термообработка
- динамическая рекристаллизация аустенита или феррита в различных слоях

кристаллографическая текстура – преимущественная ориентация зёрен (кристаллитов) поликристаллических материалов

текстурная компонента – группа кристаллитов с одинаковой ориентировкой

Методы анализа текстуры труб МГ

Анализ локальных текстур вблизи трещин

Исследованные образцы труб МГ

после

Тип труб

Двухшовные

Одношовные

Различие характера послойной текстурной неоднородности труб МГ

Распределение полюсных плотностей α-и γ-компонент

Различие характера послойной текстурной неоднородности труб МГ

Количественные характеристики текстуры, влияющие на их склонность к КРН

Рентгеновский метод определения остаточных напряжений Ν s_1 . **n**_{φψ} $n\lambda = 2d \cdot \sin(\theta)$ interference X-ray wave maximum 2/2 X_2 σ_1 $s = d \cdot sin\theta$ X_1 primary X-ray beam $\epsilon_{\psi\phi}$ $\varepsilon = \frac{d - d_0}{d_0}$ $\phi = constant$ $\varepsilon_{\varphi\psi} = \frac{1+\nu}{E} \sin^2 \psi (\sigma_1 \cos^2 \varphi + \sigma_2 \sin^2 \varphi) - \frac{\nu}{E} (\sigma_1 + \sigma_2)$ наклон ~ о sin²ψ

0

0.25

0.5

0.75

13

Распределение остаточных тангенциальных напряжений по толщине стенки труб МГ

Учет количественных характеристик кристаллографической текстуры и остаточных напряжений при прогнозировании скорости роста трещин КРН

Учет кристаллографической текстуры

Учет остаточных тангенциальных напряжений

без трещин с трещинами

$$\sigma = \sigma_3 + \sigma_0(1 - |k/ \cdot t)$$

t – толщина стенки трубы в относительных единицах σ – суммарные напряжения σ_{3} – напряжения от давления газа σ_{0} – остаточные напряжения

Заключение

- Выявлена значительная послойная текстурная неоднородность труб магистральных газопроводов, изготовленных различными производителями. Показано, что текстурная неоднородность труб различна в зависимости от режимов прокатки при одной технологии их изготовления.
- Существенные различия в текстуре двухшовных и одношовных труб, заключающиеся в большей степени текстурной неоднородности последних, приводят к увеличению их стойкости против КРН за счёт ветвления трещин на начальных стадиях роста.
- На примере нескольких труб магистральных газопроводов показано, что трещины останавливаются или замедляют рост при достижении слоя с измененной текстурой.
- Продемонстрирована зависимость между слоем с измененной текстурой и глубиной обнаруженных трещин, которая не превышает 15% от толщины стенки трубы.
- Толщина слоя торможения трещин КРН определяется совместным действием двух факторов – во-первых, ослаблением тангенциальных растягивающих напряжений по мере удаления рассматриваемого слоя от внешней поверхности трубы, и во-вторых, наличием в пределах этого слоя послойной текстурной неоднородности