

Научно-практический семинар «Повышение надежности магистральных газопроводов, подверженных коррозионному растрескиванию под напряжением» Газпром ВНИИГАЗ

ОЦЕНКА СКЛОННОСТИ К ХРУПКОМУ РАЗРУШЕНИЮ КОНСТРУКЦИОННЫХ СТАЛЕЙ

DEFINITION OF THE PROPENSITY FOR BRITTLE DESTRUCTION OF STRUCTURAL STEELS

<u>А.В. Кудря</u>, Э.А. Соколовская, Нго Нгок Ха A.V. Kudrya, E.A. Sokolovskaya, Ngo Ngok Kha

Москва, 2018

ФАКТОРЫ КАЧЕСТВА СТАЛИ

Прогноз разрушения при полигонных пневматических испытаниях

СРЕДСТВА И МЕТОДЫ ИЗМЕРЕНИЯ РАЗРУШЕНИЯ

ЭКСПЕРИМЕНТАЛЬНОЕ ПОСТРОЕНИЕ КРИВЫХ ХЛАДНОЛОМКОСТИ

При построении в общем виде зависимости z(ti), измеренной в *n* точках i = 1, 2, ..., n, её представляют кривой заданного вида $Z(\mathbf{a}, t)$ с *m* взаимно независимыми параметрами $a_1, a_2, a_3, ...$ *am*. Определение вектора параметров **a** из взаимно независимых и равноточных измерений *z* (*ti*) относится к задачам нелинейной регрессии. Её решение исходя из принципа максимума правдоподобия обеспечивается минимумом нормированной суммы квадратов отклонений $Z(\mathbf{a}, t i)$ от измеренных z(t i): $M(\mathbf{a}) = (1/n) \Sigma$ i=1n [$Z(\mathbf{a}, t i) - z(t i)$]2.

Использование метода максимума правдоподобия позволяет однозначно построить сериальную кривую с объективным определением положения верхней и нижней полок и температуры вязко-хрупкого перехода

1. Клепиков Н.П., Соколов С.Н. Анализ и планирование экспериментов методом максимума правдоподобия. М., Наука, 1964, 184с; 2. Штремель М.А. // МиТОМ. 2008. № 11; 3. Кудря А.В., Кузько Е.И., Соколовская Э.А. // ДиРМ. 2013. № 12.

ОЦЕНКА ХЛАДНОЛОМКОСТИ С ПРИВЯЗКОЙ К СТРУКТУРЕ

ВЗАИМОСВЯЗЬ ДВУХ АНОМАЛИЙ ИЗЛОМА ВЫСОКОЛЕГИРОВАННОЙ КОНСТРУКЦИОННОЙ СТАЛИ

СООТНОШЕНИЕ ДОЛИ КАМНЕВИДНОГО ИЗЛОМА f_k при +20 °C, ДОЛИ "БЕЛЫХ ПЯТЕН" f_в ПРИ –100 °C И ПЛОТНОСТИ УПРУГОЙ ЭНЕРГИИ ПРИ РАЗРУШЕНИИ

ИЗМЕНЕНИЕ УДАРНОЙ ВЯЗКОСТИ СТАЛИ 38ХНЗМФА И ДОЛИ f_k КАМНЕВИДНОЙ СОСТАВЛЯЮЩЕЙ В ИЗЛОМЕ В ЗАВИСИМОСТИ ОТ ТЕМПЕРАТУРЫ ИСПЫТАНИЯ

ЗЕРНО И ВКЛЮЧЕНИЯ

АНОМАЛИИ ВЯЗКОГО И ХРУПКОГО РАЗРУШЕНИЯ

Камневидный излом

100 MIKM

10 MKM

Излом типа "белых пятен"

|---| О,1 мм

2 MIKIM

ОГРАНИЧЕНИЯ КЛАССИЧЕСКИХ ПОДХОДОВ К ИЗМЕРЕНИЮ АЭ

Поведение материала до наступления макроразрушения анализируют по закономерностям в потоке большого числа N >>1 импульсов от микротрещины. *Необходимое исходное условие - доказать однозначное соответствие: «один импульс <=>одному акту (событию) разрушения структуры».*

Отсюда вытекает главный недостаток «универсальных» средств наблюдения АЭ. Они измеряют «суммарный счет» (число импульсов N выше некоторого порога), «скорость счета» N* и «эффективное значение» AN* (произведение скорости счета на среднюю амплитуду A – в микровольтах прибора при данном режиме регистрации).

Выбор «оптимальных» условий измерений: механический фильтр сигнала (выбрав датчик и звуковод), «наилучший» электрический фильтр: полосу частот, «мертвое время», усиление (то есть среднюю амплитуду А) обеспечивает возможность регистрации некоторого события, но не решает проблему воспроизводимости результатов.

ФАКТОРЫ ВОСПРОИЗВОДИМОСТИ ИЗМЕРЕНИЙ АЭ ПРИ РАЗРУШЕНИИ

Однозначное соответствие «импульс эмиссии <=> событие разрушения» можно доказать независимыми измерениями трещин и изломов]. Но и при этом для достоверной количественной характеристики процесса разрушения на измерения акустической эмиссии накладывается ряд условий. Помимо чувствительности и шумов аппаратуры измеримость N >>1 первичных импульсов от элементарных актов разрушения ограничивают три других обстоятельства:

- а) полоса пропускания измерительного тракта;
- б) наложение импульсов из-за большой скорости счета;
- в) реверберация упругих волн в образце.

ПРОФИЛЬ ПЕРВИЧНОГО ИМПУЛЬСА

Определяется природой источника АЭ.

Для хрупкого разрушения элементарный акт – вскрытие фасетки скола (или ЗГР) в одном зерне поликристалла – на площадке d =10...100мкм, со скоростью v ~с - порядка скорости звука с. Время упругого импульса от вскрытия фасетки t_1 = d/c, «несущая частота» ω_1 =1/ t_1 (в стали с ≈ 5,9км/с).

Для вязкого разрушения - срез перемычки между смежными ямками диаметром d =0,3...3мкм. Его «несущая частота» ω₁ ~ c/d на 1..2 порядка выше, чем при хрупком разрушении. В аппаратуре акустической эмиссии обычный порог полосы пропускания электрического тракта ω₀≤2МГц, так что время нарастания прямоугольного импульса t 0 ≥ 0,2...0,7мкс. От элементарных актов даже хрупкого разрушения импульсы столь короткие, что лежат на границе полосы а от вязкого - далеко за пределом пропускания.

НАЛОЖЕНИЕ ИМПУЛЬСОВ

Когда макротрещина шириной В движется со средней скоростью w, а разрушение происходит на элементарных площадках размером d^2 , сигналы поступают со скоростью N* = wB / d^2 .

Даже при малой скорости трещины $w_{\min} \sim 10$ м/с и крупном зерне d ~100мкм скорость счета при B ~1см составит N* ~107 имп/с. Интервал между импульсами 1/N* ~0,1мкс сравним со временем вскрытия фасетки $t_1 = d/c$. Таким образом, при всех стандартных испытаниях: на растяжение, ударную вязкость, вязкость разрушения - импульсы от единичных актов разрушения в микроструктуре многократно перекрываются. Как одиночные импульсы регистрируются события макро- или мезоуровня (разрушение пучков волокон, групп включений и т.п.).

Однозначное соответствие импульса акустической эмиссии элементарному акту разрушения в микроструктуре возможно только для медленной макротрещины (при ее средней скорости w<<1м/c)

КАК БОРОТЬСЯ С НАЛОЖЕНИЕМ ИМПУЛЬСОВ АЭ?

Чтобы «замедлить поток» N*, необходимо ограничить масштабы области событий:

- локализовать их в маленькой накладной коррозионной ванне;
- в узком надрезе, пятне вдавливания;
- использовать микрообразцы (рассечь, например, надрезами образец на 60 балок сечением ~1 мм², и испытать их порознь

СРЕДСТВА РЕГИСТРАЦИИ АЭ

От датчика зависит, будет ли импульс акустической эмиссии зарегистрирован как единичный или как цуг импульсов. В пьезокристалле толщиной h сигнал распространяется за время t = h/c. Если датчик не демпфирован, то его собственные колебания на частоте ω=с/h порождают цуг сигналов реверберации с интервалами 2t. Электрическая схема с верхней границей полосы пропускания ω₀ и постоянной времени т=1/ ω₀ интегрирует этот цуг за время т. При т << t импульсов будет сосчитано много больше, чем скачков трещины, а при т >> t измеряется амплитуда непервичного сигнала, а суммы неопределенного число импульсов, циркулирующих в датчике. В этом преимущество резонансных датчиков при обнаружении скачков трещины в конструкциях: суммарный сигнал больше первичного.

Лучшее разрешение во времени (ценой меньшей чувствительности) дает демпфированный датчик, не имеющий собственной реверберации (или напыленные пьезопленки). Его главное преимущество: затухание позволяет выделять из цуга реверберации только первичные импульсы, регистрировать их «в пропорции 1:1» и измерять амплитуды.

ТЕХНИКА ЛОКАЛЬНОЙ ОЦЕНКИ ХЛАДНОЛОМКОСТИ С ПРИВЯЗКОЙ К СТРУКТУРЕ

Сопоставление верхних границ интервала хладноломкости, полученных при стандартных испытаниях на ударную вязкость Ткр(KCU) и на микрообразцах

 $T_{Cr}(AE) = (1,07 \pm 0,03) \times T_{Cr}(KCU) + 18,5;$ $R = 0.97^{+0.02}_{-0.18}$

Ткр(АЭ)

1 - 0% зернограничного разрушения (ЗГР)
2 - 30% ЗГР
3 - 100% ЗГР

$$\mathbf{P} = \mathbf{u}\mathbf{V}/\mathbf{t} = \frac{\sigma^2 c}{2E}B^2$$

Р – выделяемая мощность u - $\frac{\sigma^2}{2E}$ - плотность упругой энергии при разрушении объема V=B² за время t = B/c c – скорость образования хрупкой трещины при напряжении σ E – модуль Юнга Изменение плотности упругой энергии и, высвобождаемой разрушением

доля ЗГР составляет 0, 30 и 100 % соответственно $q \sim u \sim \sigma^2$

БЛОК-СХЕМА УСТАНОВКИ ДЛЯ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ ВЯЗКО-ХРУПКОГО ПЕРЕХОДА ПО ИЗМЕРЕНИЯМ АКУСТИЧЕСКОЙ ЭМИССИИ

Масштаб структурной неоднородности соответствует габаритам образца

Измерения АЭ показали, что кластеры частиц

ДАЛЬНИЕ ПОСЛЕДСТВИЯ ЛИКВАЦИИ В КРУПНЫХ ПОКОВКАХ ИЗ СТАЛИ 38ХН3МФА

Макроструктура

Дилатированный серный отпечаток

Микроструктура

Причина неоднородности хладноломкости (по измерениям АЭ): межосья начинают хрупко разрушаться начиная с -90, а оси с – 130 градусов Цельсия

УТОЧНЕНИЕ МЕТОДИКИ ОПРЕДЕЛЕНИЯ КРИТИЧЕСКОГО РАСКРЫТИЯ ТРЕЩИНЫ δ_с

ДИАГРАММА «НАГРУЗКА - СМЕЩЕНИЕ» «load-displacement» diagram

РЕКОНСТРУКЦИЯ ФОРМЫ ПЕРЕДНЕГО ФРОНТА ТРЕЩЙНЫ REKONSTRUKTION OF FORM OF CRACK FRONT

DIGITAL LASER PROFILOGRAPH

ЦИФРОВОЙ ЛАЗЕРНЫЙ ПРОФИЛОГРАФ

СОПОСТАВЛЕНИЕ ОТВЕТНЫХ ПОЛОВИНОК ИЗЛОМОВ COMPARISON OF THE RESPONSE HALVES OF KINKS (common coordinate system)

СООТНОШЕНИЕ МАСШТАБОВ КРИТИЧЕСКОГО РАСКРЫТИЯ ТРЕЩИНЫ (КР) ДЛЯ ФАСЕТОК КАМНЕВИДНОГО ИЗЛОМА РАЗЛИЧНОЙ МОРФОЛОГИИ

А.М. Арсенкин

ПОСТРОЕНИЕ ПОЛИЭДРОВ ВОРОНОГО

б) Исходное изображение

400 мкм

Взаимосвязь кучности ямок вязкого излома (статистика полиэдров Вороного) и разброса ударной вязкости ²⁸

Асимметричность распределения ближайших соседей	Доля перемычек	Диапазон поперечника ямок	Ударная вязкость
К от 0,53 до 0,97	от 0,53 до 0,28	от 8 до 25 мкм	от 0,58 до 2,8 МДж/м²

Измерение геометрии различных структур для их количественной оценки (различие в геометрии номинально однотипных структур определяет неоднородность пластичности и вязкости от изделия к изделию)

ЗАКЛЮЧЕНИЕ

- 1. Для объективной оценки склонности конструкционных сталей к хрупкому разрушению необходимо понимание механизмов разрушения.
- 2. При развитой структурной неоднородности сталей полезно испытание малогабаритных образцов, габариты которых сопоставимы с масштабами неоднородности структур.
- 3. Воспроизводимость получаемых значений характеристик трещиностойкости требует учета многих факторов, в частности, применения корректных процедур обработки результатов экспериментов.
- 4. Существенную положительную роль в повышении объективности получаемых характеристик, оценивающих склонность сталей к разрушению, играет цифровизация эксперимента.

СПАСИБО ЗА ВНИМАНИЕ!

НИТУ «МИСиС» / 2017

Для выбора параметров АЭ, оценивающих размер трещины и высвобождаемую энергию, исследовали форму первичного сигнала от трещины. Чтобы выходное напряжение пьезодатчика было пропорционально смещению в акустической волне, выбран демпфированный пьезоэлемент (керамика ЦТС-19, диаметр 4 мм, толщина 0,8 мм и конусная акустическая ловушка из латуни Л-59, тарированный прижим). Режим близок к холостому ходу, полоса частот 6 КГц-10 МГц, динамический диапазон 90 дБ в одном измерении. Линейность амплитудно-частотной характеристики (АЧХ) датчика по уровню 3 дБ проверена в диапазоне 0,02–2 МГц, на установке "Спектр", а до 30 МГц – по осциллограммам коротких (0,1 мкс) акустических импульсов, возбуждаемых в образце тонкой (0,1 мкм) пьезопленкой.

После предварительного усиления на 30 дБ (при нелинейности АЧХ усилителя ±3 дБ) сигнал регистрировался двухмерным универсальным запоминающим осциллографом C8-14 с временем развертки 10 мкс–0,1 с, как непосредственно, так и после пикового детектора (скорость нарастания сигнала детектора 50 В/мкс, приведенный ко входу уровень шумов 10 мкВ). Параллельно детектированный сигнал подавался на самопишущий прибор Н338-6П. Амплитуды измеряли в децибелах относительно средней амплитуды импульсов шума установки.

С целью контроля воспроизводимости во всем электроакустическом тракте (образец – контактный слой – пьезопреобразователь – регистрирующая аппаратура) перед каждым испытанием давался упругий импульс известной энергии: на микрообразец сбрасывался с высоты h1=15,0 0,1 мм стальной шарик массой m=46,0 0,1 мг. Высота отскока h2=2,5 0,3 мм регистрировалась на фотопленке при боковом освещении стробоскопическим тахометром CT-5 с частотой вспышки f=30–60 Гц и измерялась по фотоснимкам при увеличении 10-15 на универсальном измерительном микроскопе УИМ-21 с погрешностью 0,1 мм.

Падение шарика диаметром 1,4 мм на образец возбуждало сигнал АЭ длительностью 6–10 мкс при скорости нарастания импульса выходного напряжения 0,6–1,0 В/мкс – примерно такой же, как и от хрупкой трещины размером 0,4 мм (4-8 мкс и 0,8–1,5 В/мкс соответственно).

Амплитуда импульса АЭ была пропорциональна энергии шарика – при изменении высоты сброса h1 от 5 до 40 мм через 5 мм (по 30–40 измерений), коэффициент корреляции R = 0,999. По пиковой амплитуде сигнала от сброса шарика прямо измеряется высвобождаемая упругая энергия, а поскольку время соударения для данного шарика неизменно, то и мощность в упругом импульсе.

Воспроизводимость методики проверяли как по конечному результату — порогу хладноломкости, так и поэлементно: по влиянию расстояния от излома до датчика, по разнотолщинности микро¬образцов и несоосности нагружения.