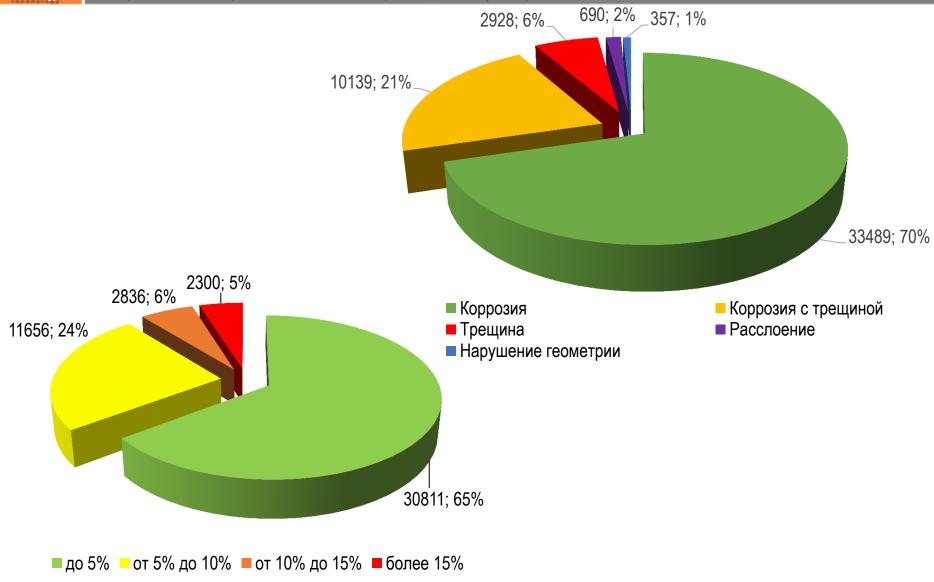
Контроль околошовных зон сварных соединений трубопроводов для обнаружения и локализации дефектов типа КРН, с применением внутритрубного сканера-дефектоскопа A2072 «IntroScan»

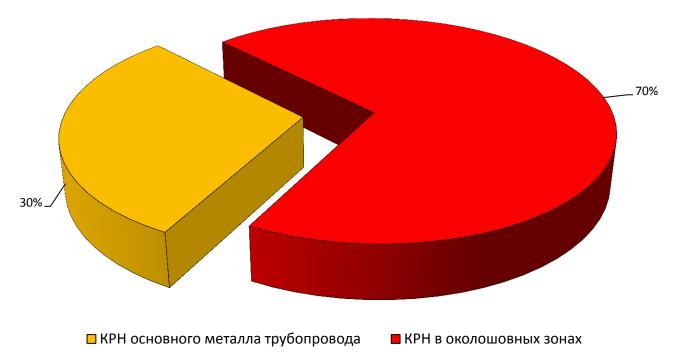
Докладчик:

Дроздов Ф.Н. – инженер ЗАО «ИнтроСкан Технолоджи»

Соавторы:

Ворончихин С.Ю. – генеральный директор ЗАО «ИнтроСкан Технолоджи»


Самокрутов А.А. – генеральный директор ООО «АКС»

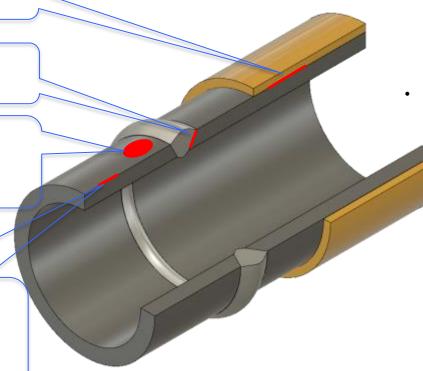

Раздел 1 Проблемы поиска и локализации стресскоррозионных дефектов труб

Распределение дефектов выявленных при ВТД по типу и глубине за 2016-2017 гг.

Соотношение дефектов типа КРН по месторасположению на элементе трубопровода

Причины концентрации дефектов типа КРН в околошовных зонах обусловлены следующим:

- Расположение продольных сварных соединений в нижнем сегменте трубопровода;
- Неплотное прилегание пленочного изоляционного покрытия («палаточный» эффект) способствуют попаданию грунтового электролита под изоляцию и, как следствие, развитию КРН;
- Зона повышенных механических напряжений, вследствие термического влияния.


Актуальные задачи НК ТТ

- Поиск мест повреждений и отслоений защитного изоляционного покрытия
- Поиск и отбраковка дефектов в стыковых сварных швах
- Поиск мест коррозионного повреждения и измерение остаточной толщины стенки трубы

- Измерение высоты трещиноподобных дефектов
- Поиск и идентификация дефектов КРН

Особенности НК ТТ КС

- При внешнем доступе:
 - высокая стоимость
 - низкая производительность
 - высокая доля ручного контроля
 - влияние человеческого фактора на результаты контроля
 - При внутритрубном доступе:
 - ручной контроль исключается
 - сложная геометрия ТТ КС наличие отводов, тройников, переменных сечений, подъёмов и спусков
 - качество поверхности наличие пылемасляных отложений и загрязнений на внутренней поверхности
 - массогабаритные ограничения
 доступ через технологическое
 отверстие или люк-лаз
 - максимальная дальность контроля от точки доступа – до 1000 м

Импульсные магниты

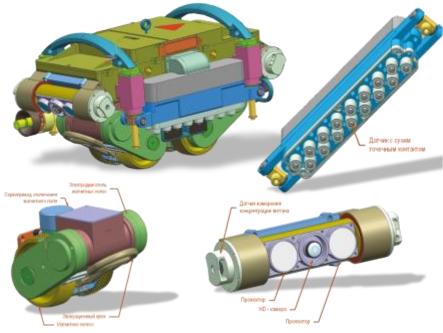
Принципиальные возможности применяемых физических методов НК для ВТД

(M) IntroScan
Изве

Известные методы НК	Особенности		
Рентгеновский	Требуется двусторонний подход, неприменим для ВТД		
Магнитный	Необходимо 100% сканирование по внутренней поверхности (низкая производительность) Ограничения по толщине стенки ТТ и чувствительности Большие массогабаритные характеристики		
Вихретоковый	Необходимо 100% сканирование по внутренней поверхности (низкая производительность) Чувствителен только к дефектам со стороны доступной поверхности		
Лазерно - оптический	Высокая производительность. Возможность измерения внутренней геометрии ТТ.		
	ПЭП технология жидкостный контакт	Дальность до 0,50,8 м. Сильное влияние изоляции на дальность. Проблемы по обеспечению стабильного акустического контакта	
УЗ эхо-метод ВЧ (0,55 МГц) SV волна Многократные отражения	ЭМА Лоренцевский Постоянные магниты	Дальность до 0,20,3 м. Сильное влияние изоляции на дальность. Налипание окалины на магнитную систему. Низкий уровень сигналов.	
	ЭМА Лоренцевский Импульсные магниты	Дальность до 0,20,3 м. Сильное влияние изоляции на дальность. Низкий уровень сигналов.	
УЗ эхо-метод НЧ (30500 кГц)	ПЭП технология, сухой точечный контакт (СТК)	Дальность 515 м. Слабое влияние изоляции на дальность.	
SH волна Волноводный метод	ЭМА магнитострикция	Дальность до 0,30,5 м Слабое влияние изоляции на дальность. Низкий уровень сигналов. Сильный разброс магнитострикции в материале –	

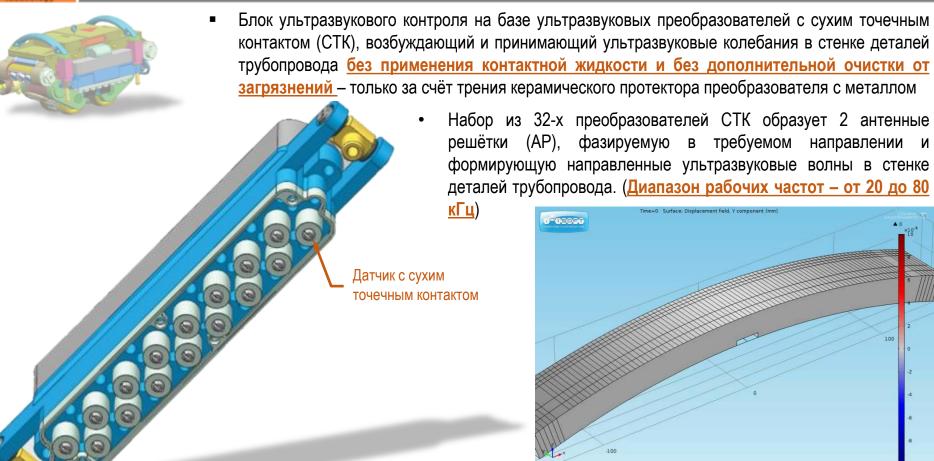
уровень сигналов. Сильный разброс магнитострикции в материале -

нестабильность чувствительности


Волноводный метод

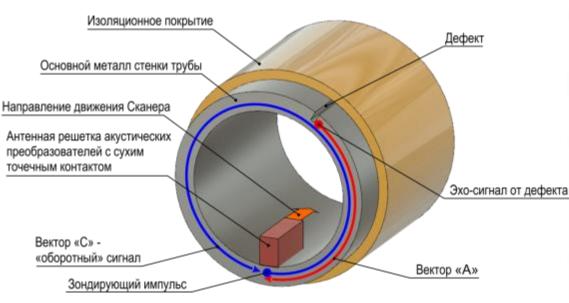
Раздел 2 «Индикаторный» режим контроля - обнаружение (локализации) стресс-коррозионных дефектов труб

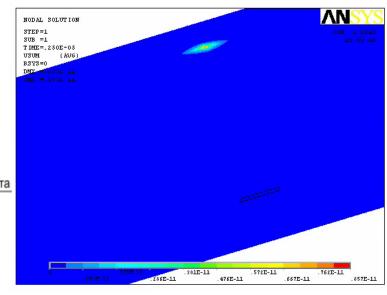
Краткие характеристики



-			
	Разработчик	ЗАО «ИнтроСкан Технолоджи»	
	Наименование	Сканер-дефектоскоп A2072 «IntroScan»	
	Конструкция	Автономный (без кабеля связи и питания), роботизированный (высокая автоматизация), на магнитных мотор-колесах, с акустической антенной решеткой на датчиках с сухим точечным контактом	
	Габариты / Масса	400,0 * 270,0 * 240,0 мм / 22 кг	
	Производительность контроля	0,51,0 п.м./мин (акустический контроль) 5,0 п.м/мин (визуальный контроль)	
	Загрузка Сканера	Штатные люк-лазы, обратные клапаны от Ду 300 мм; технологические отверстия 340*240 мм (овал)	
	Дальность контроля от места загрузки	~1 500 м (на прямолинейных участках трубопроводов) ~1 000 м (технологические трубопроводы КС)	
	Режимы контроля	«индикаторный» (оценка относительной глубины дефекта к толщине стенки обследуемого элемента)	
	- визуальный контроль	внутренняя полость трубопровода, поверхность основного металла и сварных соединений	
	- ультразвуковой волноводный контроль	основной металл и сварные соединения труб и СДТ	
	- толщинометрия	оценка толщины стенки труб и СДТ	
	- контроль изоляция	качественная оценка адгезии изоляционного покрытия	
	Чувствительность акустического контроля	15 % от толщины стенки элемента; 30% от толщины сварного соединения.	
	Подготовительные мероприятия	Не требуется очистка внутренней полости от загрязнений	
	Объекты контроля	Трубы, отводы, тройники, переходы Ду 400-1400 мм (горизонтальные, наклонные, вертикальные и неравнопроходные участки трубопроводов)	

Антенная решётка с акустическими датчиками с сухим точечным контактом




- Основные функциональные возможности АР СТК сканера-дефектоскопа A2072 «IntroScan»(Сканер) :
 - Отсутствует «мертвая зона» под Сканером;
 - Оценка «качества» контакта каждого датчика СТК при сканировании, нормирование значений вычисляемых амплитуд акустических сигналов для каждого датчика СТК, корректное вычисление «опорного» сигнала;
 - Увеличение чувствительности при выявлении «плоскостных» дефектов, в том числе расположенных в околошовных зонах.

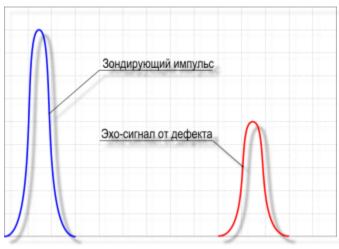
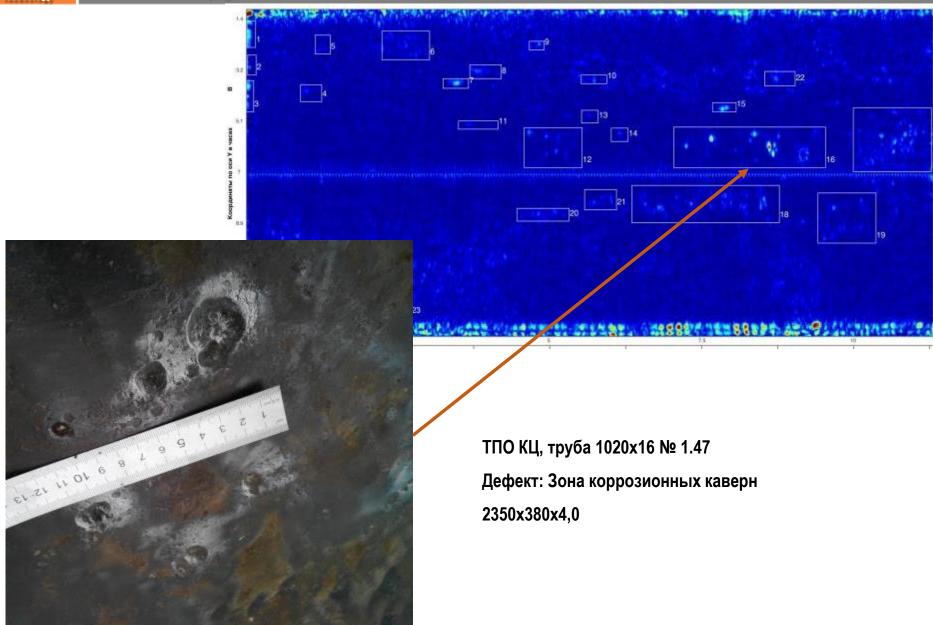
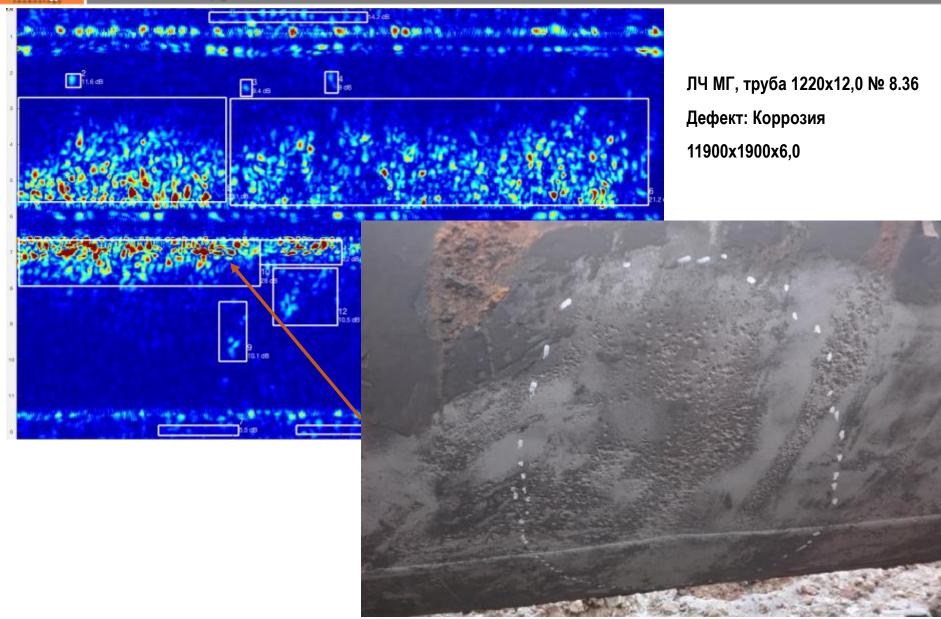

Волноводный ультразвуковой контроль – алгоритм обследования

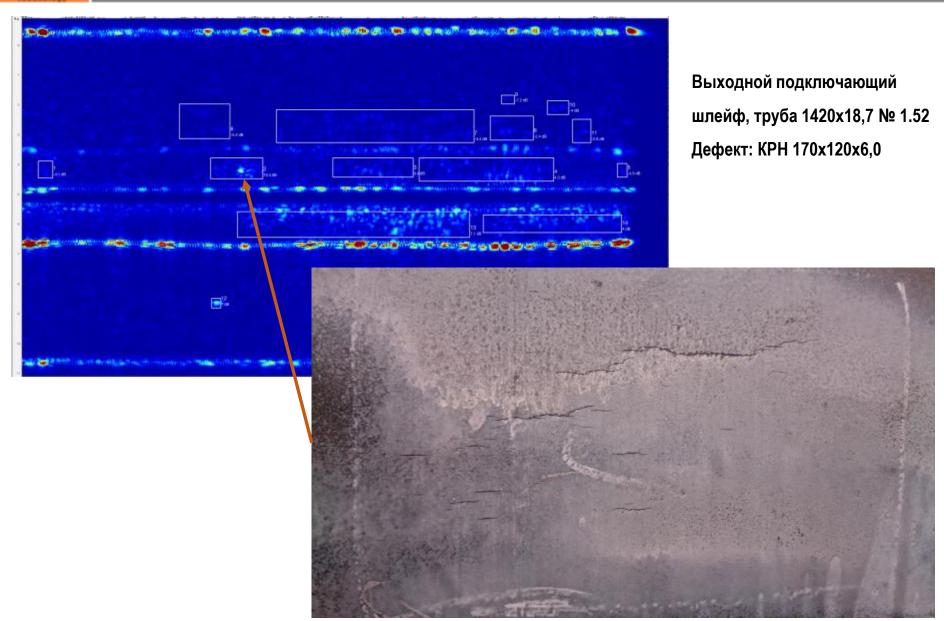
Схема формирование зондирующего импульса «вправо» от Сканера (анализ векторов «А», «С»)


Анализ акустических сигналов при поиске дефектов

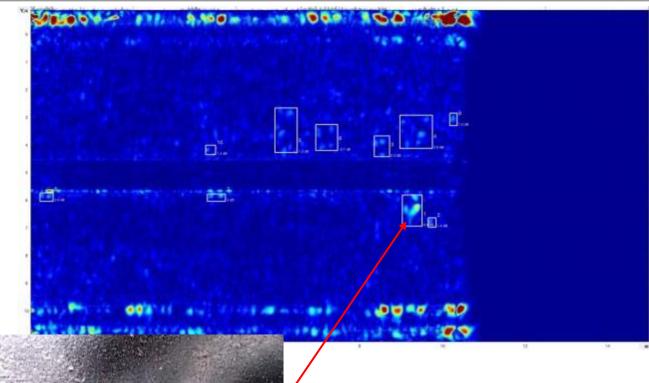
При наличии аномалии на пути распространения волны возникают эхо-сигналы, которые регистрируются той же AP, работающей в приёмном режиме. За счёт использования эффекта волноводного распространения ультразвуковых волн в стенке трубы обеспечивается контроль всего тела трубы при перемещении Сканера только по линии образующей, т.е. <u>без необходимости сканирования всей внутренней поверхности трубопровода</u>, с производительностью <u>не менее 0,5 погонных метра в минуту</u>.



Объект: ТПО КЦ Ду1000

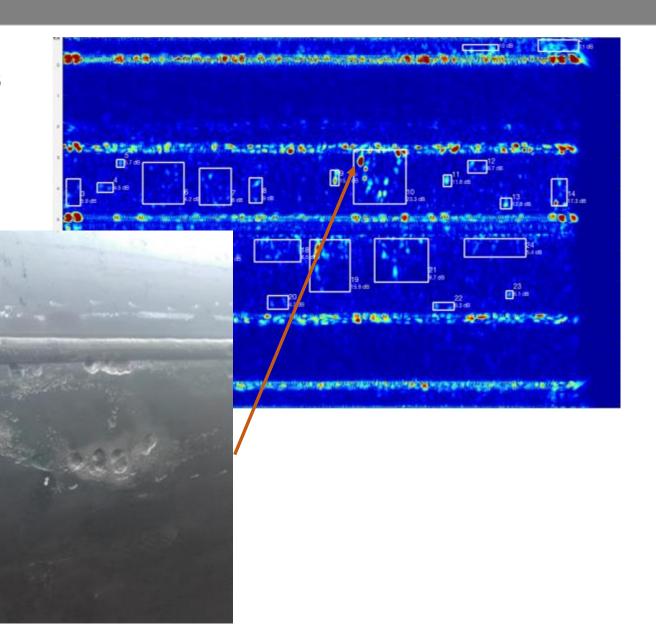


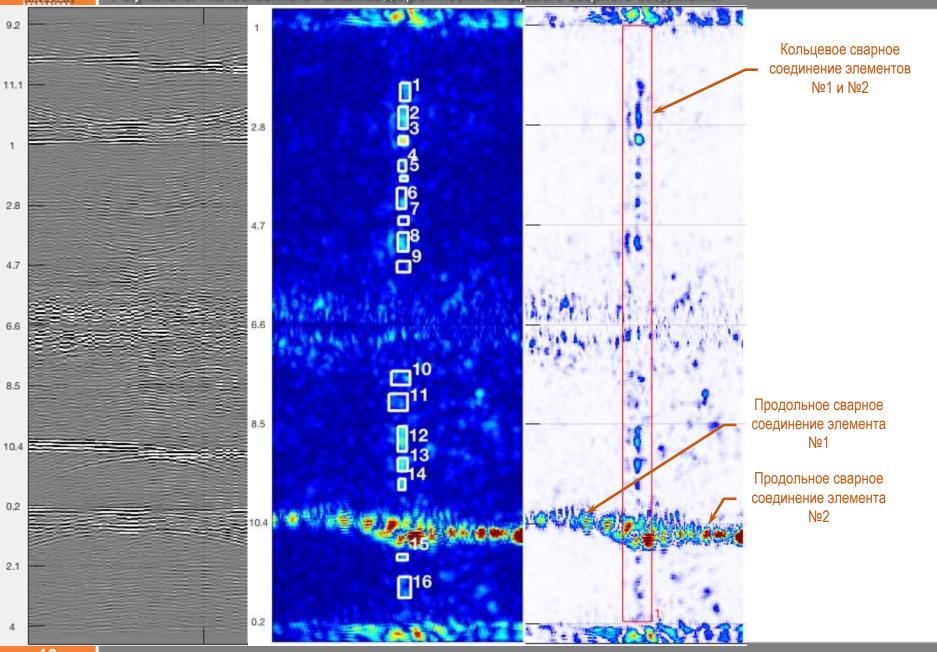
Контроль околошовных зон сварных соединений трубопроводов Объект: ЛЧ МГ Ду1200


Объект: Подключающие шлейфы Ду1400

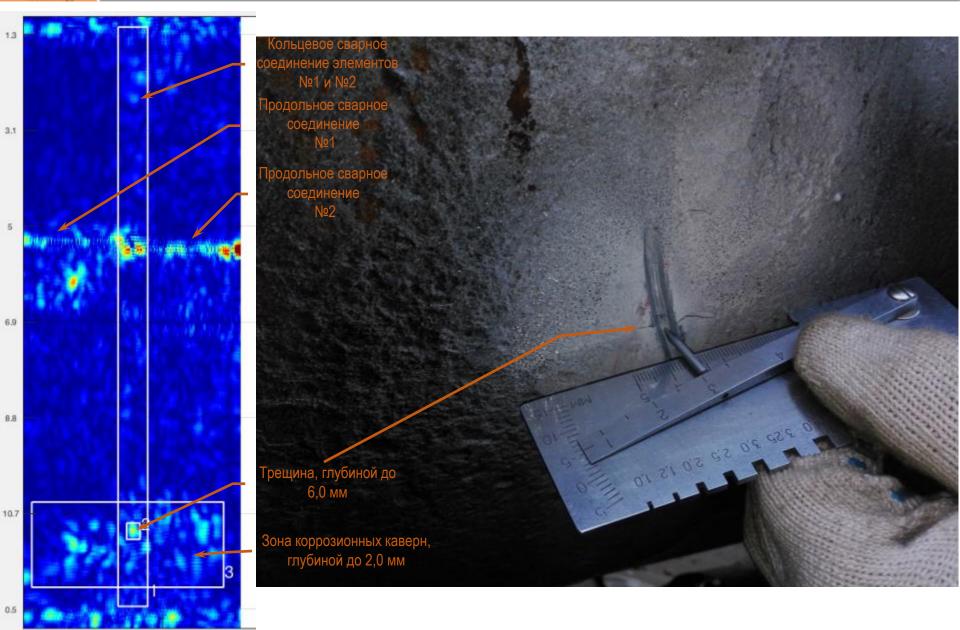
Контроль околошовных зон сварных соединений трубопроводов Объект: ТПО КЦ Ду1000

Выходной коллектор ГПА, труба 1020х16, № 5.58 Комбинированный дефект : коррозия + КРН 400х300х2,0




Контроль околошовных зон сварных соединений трубопроводов Объект: ЛЧ МГ Ду1200

ЛЧ МГ, труба 1220х13,6 № 12.45 Комбинированный дефект : коррозия + КРН 500х150х1,0

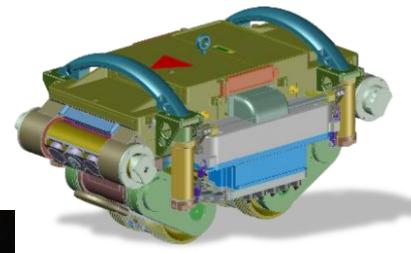


Результаты «качественного» анализа дефектности кольцевого сварного соединения

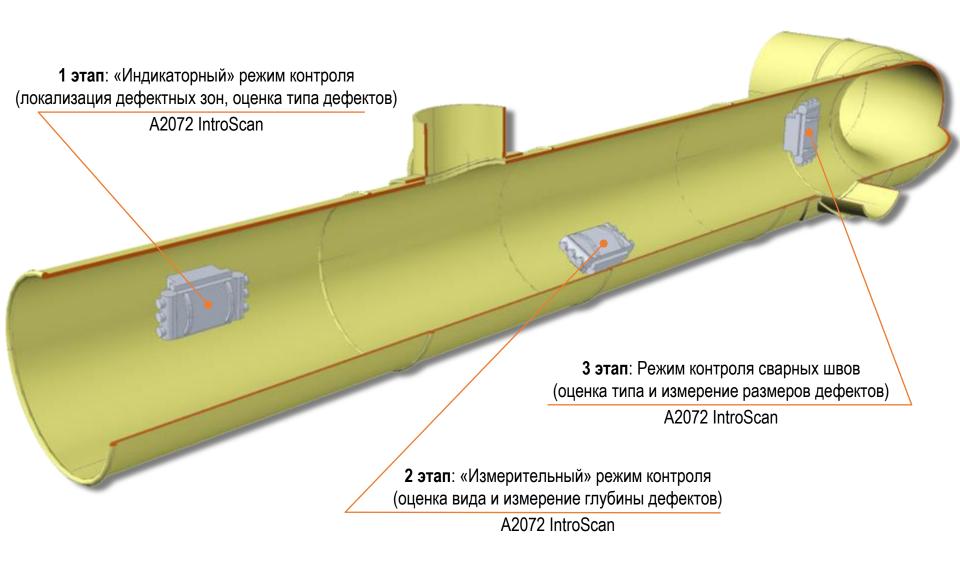
Результаты «качественного» анализа дефектности кольцевого сварного соединения

Раздел 3 «Измерительный» режим контроля — оценка размеров стресс-коррозионных дефектов труб

Разработка сканера-дефектоскопа A2072 "IntroScan" для контроля сварных соединений


Основные принципы работы системы

- Использование **среднечастотного** датчика с сухим точечным контактом (с рабочей частотой 300-500 кГц);
- Использование многоэлементных антенных решеток в сочетании с алгоритмами цифровой фокусировки антенны(ЦФА).


Ожидаемые результаты:

- контроль сварных соединений в «измерительном» режиме;
- ультразвуковой контроль основного металла деталей с оценкой относительной глубины и типа локализованных ранее дефектных участков.

Общая схема проведения работ по ВТД с применением Сканеров

Выводы

- Опробована возможность проведения «индикаторного» контроля, при продольном перемещении сканера-дефектоскопа A2072 «IntroScan», вдоль оси трубопровода, для выявления значительных по глубине дефектных зон кольцевых сварных соединений элементов трубопроводов;
- Подтверждена возможность сканера-дефектоскопа A2072 «IntroScan», при продольном перемещении, вдоль оси трубопровода, локализовать дефекты в околошовных зонах сварных соединений и основного металла трубопровода, глубиной более 15% от толщины стенки детали.

СОЗДАВАЯ БЕЗОПАСНОЕ БУДУЩЕЕ...

