II Научно-практический семинар «Повышение надежности магистральных газопроводов, подверженных коррозионному растрескиванию под напряжением»

СТРУКТУРНЫЕ И МЕТАЛЛУРГИЧЕСКИЕ ФАКТОРЫ РИСКА ПРЕЖДЕВРЕМЕННОГО РАЗРУШЕНИЯ ЛИСТОВЫХ СТАЛЕЙ И МЕТОДЫ ИХ ОЦЕНКИ

Кудря А.В., профессор, д.т.н., <u>Кузько Е.И.</u>, доцент, к.ф.-м.н., Соколовская Э.А., доцент, к.т.н.

AVKudrya@misis.ru

Национальный исследовательский технологический университет «МИСиС»

24-26 мая 2016 г. ООО «Газпром ВНИИГАЗ»

Параметры качества конструкционных (трубных) сталей ПРОЧНОСТЬ способность выдерживать заданные нагрузки в конструкции

 ПЛАСТИЧНОСТЬ – способность выдерживать приемлемые деформации

ВЯЗКОСТЬ -

способность сопротивляться разрушению

СОСТАВЛЯЮЩИЕ КАЧЕСТВА КОНСТРУКЦИОННЫХ (ТРУБНЫХ) СТАЛЕЙ

Разномасштабные

структуры стали

 Металлургическое качество: неметаллические включения, охрупчивающие примеси, газы

ПРИРОДА НЕОДНОРОДНОСТИ КАЧЕСТВА ПРИ СОБЛЮДЕНИИ ДИРЕКТИВНОЙ ТЕХНОЛОГИИ

Отдельная траектория технологии определяет свой путь эволюции структур и дефектов в ходе технологического передела

МАСШТАБ НЕОДНОРОДНОСТИ ЭЛЕМЕНТОВ СТРУКТУРЫ КОНСТРУКЦИОННОЙ СТАЛИ

Кооперативное влияние разномасштабных структур на деформацию и разрушение

Многообразие типов неоднородных разномасштабных структур «на выходе»

Эволюция структур и дефектов в ходе протяженной технологической цепочки

РАЗНОРОДНЫЕ СТРУКТУРЫ В СТАЛЯХ (в макро- и мезомасштабах)

38ХН3МФА

15Х2НМФА

Осевая ликвация в трубных сталях К60-К65 (<0,002%S)

НЕОДНОРОДНОСТЬ СВОЙСТВ ЛИСТОВЫХ СТАЛЕЙ

ИПГ

09Г2ФБ, 10Г2ФБЮ

$\sigma_r \longrightarrow \delta$ КСV $\sigma_s \longrightarrow \delta$ - Бариация (Xmax-Xmin)/Xcp

Испытание на растяжение

НЕОДНОРОДНОСТЬ СТРУКТУР В ТРУБНЫХ СТАЛЯХ (в мезо- и микромасштабах)

ΗП

Класс прочности К52 (Х60)

Класс прочности К65(Х80)

Класс прочности К60(Х70)

Класс прочности К70(Х90)

ФАКТОРЫ ТОЧНОСТИ ПРОГНОЗА РАЗРУШЕНИЯ НЕОДНОРОДНЫХ СТРУКТУР

- Минимизация погрешности определения небольших смещений кривых хладноломкости
- Испытание образцов с привязкой к микроструктуре (на растяжение в третьем направлении)
- Извлечение максимальной информации при измерении геометрии изломов на разных масштабных уровнях наблюдения
- Прямое сопоставление неоднородности разномасштабных структур и строения изломов для выявления критических параметров структуры
- Получение количественных оценок неоднородности разнородных структур на основе документированных компьютеризированных, быстродействующих процедур

ВЛИЯНИЕ РАЗМЕРА ЗЕРНА НА ОХРУПЧИВАНИЕ СТАЛИ

РОЛЬ ЗЕРНОГРАНИЧНЫХ ПРИМЕСЕЙ

при ООХ повышение порога хладноломкости на каждый 0,01 ат % составляет:

ПОЧЕМУ ВАЖНА ОБЪЕКТИВНАЯ ОЦЕНКА МАЛЫХ СМЕЩЕНИЙ СЕРИАЛЬНЫХ КРИВЫХ

ЭКСПЕРИМЕНТАЛЬНОЕ ПОСТРОЕНИЕ КРИВЫХ ХЛАДНОЛОМКОСТИ

При построении в общем виде зависимости *z*(*ti*), измеренной в *n* точках *i* =1, 2, …, *n*, её представляют кривой заданного вида *Z*(**a**, *t*) с *m* взаимно независимыми параметрами *a*₁, *a*₂, *a*₃,… *am*. Определение вектора параметров **a** из взаимно независимых и равноточных измерений *z*(*ti*) относится к задачам нелинейной регрессии. Её решение исходя из принципа максимума правдоподобия обеспечивается минимумом нормированной суммы квадратов отклонений *Z*(**a**, *t i*) от измеренных *z*(*t i*):

 $M(\mathbf{a}) = (1/n) \Sigma i = 1n [Z(\mathbf{a}, ti) - z(ti)]2.$

Использование метода максимума правдоподобия позволяет однозначно построить сериальную кривую с объективным определением положения верхней и нижней полок и температуры вязко-хрупкого перехода

 Клепиков Н.П., Соколов С.Н. Анализ и планирование экспериментов методом максимума правдоподобия. М., Наука, 1964, 184с; 2. Штремель М.А. // МиТОМ. 2008. № 11; 3. Кудря А.В., Кузько Е.И., Соколовская Э.А. // ЛиРМ. 2013. № 12.

БИТЬ ИЛИ НЕ БИТЬ?

Это актуально оценке хладноломкости высокопрочных трубных сталей

Извлечение дополнительной информации при измерении макрогеометрии изломов ударных образцов

ИЗМЕНЕНИЕ ВЯЗКОСТИ СТАЛИ 15Х2НФМА И СООТНОШЕНИЯ РАЗЛИЧНЫХ МЕХАНИЗМОВ ХРУПКОГО РАЗРУШЕНИЯ В ЗАВИСИМОСТИ ОТ ТЕМПЕРАТУРЫ ИСПЫТАНИЯ

ГЕОГРАФИЯ СОСТАВЛЯЮЩИХ ИЗЛОМА (различная морфология зернограничной составляющей

Полоски зернограничного излома 12 Кудря А.В., Никулин С.А., Николаев Ю.А. и др. // Изв. Вузов. Черн. Мет. 2009. №. 9

Вязкий излом

МОРФОЛОГИЯ ЗЕРНОГРАНИЧНОЙ СОСТАВЛЯЮЩЕЙ В ИЗЛОМАХ УДАРНЫХ ОБРАЗЦОВ, СТАЛЬ 15Х2НМФА

Виды ориентации зернограничных полосок ликвации: перпендикулярно (г) и параллельно (д) надрезу ударного образца

Техника локальной оценки хладноломкости с привязкой к структуре (по измерениям акустической эмиссии)

Соотношение между пиковой амплитудой АЭ и площадью хрупкой трещины, S

Штремель М.А., Алексеев И.Г., Кудря А.В., Мочалов Б.В. // Зав. лаб. 1991. № 8.

ВЗАИМОСВЯЗЬ ГЕОМЕТРИИ ИЗОБРАЖЕНИЙ МИКРОСТРУКТУР И ИЗЛОМОВ, лист из стали Ст3сп

размер зерна, мкм	размер ямок, мкм	шаг полос перлита, мкм	периодичност ь строения изображения излома, мкм
20,4 ± 0,8	19,1 ± 0,5	36,8 ± 0,5	40,3 ± 1,1

прокатки

СТАТИСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ МЕЗОСТРУКТУРЫ

	Количество	Среднее	Мини-	Макси-	Размах	Асим-	Эксцесс
Параметр, мкм	измерений		мум	мум		метрия	
Ширина бороздок	408	36±16	10	92	82	0,93	0,59
Длина неметалли-							
ческих включений	71	18±10	3	47	44	0,98	0,57

ФЕРРИТО-ПЕРЛИТНАЯ ПОЛОСЧАТОСТЬ

СТАТИСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПОЛОСЧАТОСТИ

	Количеств о	Среднее, Хср	Мини-	Макси-	Размах, Xmax- Xmin	Асим-	Эксцесс
Параметр, мкм	измерений		мум, Xmin	мум, Хтах		метрия	
Ширина полосы феррита	423	12±6	5	30	25	0,42	-0,67
Ширина полосы перлита	423	8±3	5	15	10	0,75	-0,46

ПЕРЕХОД ОТ МИКРО- К МЕЗОМАСШТАБАМ РАЗРУШЕНИЯ

(дилатированные изображения)

МИКРОСТРУКТУРА, НЕМЕТАЛЛИЧЕСКИЕ ВКЛЮЧЕНИЯ И РАЗРУШЕНИЕ СТАЛИ 09Г2ФБ

Сталь 09Г2С испытания в Z направлении

ОЦЕНКИ (различие в геометрии номинально однотипных структур определяет неоднородность пластичности и вязкости от изделия к изделию)

Измерение геометрии различных структур для их количественной оценки

ВЫДЕЛЕНИЕ ПОЛОС ФЕРРИТА В МИКРОСТРУКТУРЕ

Направление прокатки

Исходное изображение, х 500

Бинаризированное изображение

Панорама

Панорама – «склейка» из 150 кадров (на каждый вариант - производитель), просмотренная площадь – 4...5 кв. мм, соответственно

С использованием программных продуктов измеряются длина ферритных полос, их ширина и угол наклона к направлению прокатки 27

Наблюдение неметаллических включений и микроструктуры (в масштабе образца, склейкой отдельных кадров в панораму)

Прямое сопоставление неоднородности структур и разрушения, штрипс категории прочности К 65

ВЯЗКОЕ ПРОТЯЖЕННОЕ РАЗРУШЕНИЕ (при полигонных пневматических испытаниях)

ШИФЕРНОСТЬ ИЗЛОМА

РАССЛОЕНИЯ В ИЗЛОМАХ ОБРАЗЦОВ ИПГ

СТРОЕНИЕ РАССЛОЕВ

- Возникает в шейке образца при растяжении вдоль плоскости прокатки.
- Сила, растягивающая вдоль поверхности шейки, имеет составляющую по нормали к плоскости листа, которая приводит к продольным разрывам по некоторой «слабой поверхности» в структуре листа. Они расщепляют металл в шейке на стопку лент.
 - Начало расслоев прекращает сужение шейки, что определяет полную величину относительного сужения образца ψ и всю суммарную работу его растяжения.
 - Шиферность вязкого излома толстого листа - признак пониженной вязкости, и прогноз более резкого падения вязкости при ужесточении условий испытания (эксплуатации).

РАСПРЕДЕЛЕНИЕ ФАСЕТОК ПО РАЗМЕРАМ В ИЗЛОМАХ УДАРНЫХ ОБРАЗЦОВ СТАЛЕЙ 06Г2НДБ, ВЫРЕЗАННЫХ ВДОЛЬ НАПРАВЛЕНИЯ ПРОКАТКИ

Оценка неоднородности размещения ямок на 2D-изображении (на основе статистики полиэдров Вороного)

Порог бинаризации варьируется от 1 до 255 Нос кривой соответствует оптимуму изображения

Построение осуществляется по центрам масс каждого объекта методом пересечения серединных перпендикуляров: если центры всех объектов соединить отрезками и через середину каждого провести перпендикуляр, то около каждого объекта будет построен многоугольник, в котором все точки ближе к центру «своего» объекта, чем «чужого»

Полиэдры Вороного

Взаимосвязь кучности ямок и разброса значений ударной вязкости

	Асимметричность распределения ближайших соседей	Доля перемычек	Диапазон поперечник а ямок	Ударная вязкость	
		от 0,53 до	от 8 до 25	от 0,58 до	
	к от 0,55 до 0,97	0,28	мкм	2,8 МДж/м²	30

НАБЛЮДЕНИЕ И ИЗМЕРЕНИЕ НЕОДНОРОДНОСТИ СТРУКТУР, ПЛАСТИЧНОСТИ И ВЯЗКОСТИ ДЛЯ УПРАВЛЕНИЯ КАЧЕСТВОМ МАТЕРИАЛОВ

ЗАКЛЮЧЕНИЕ

Взаимодействие технологически «неизбежных» разномасштабных структур – причина провалов пластичности и вязкости конструкционных материалов. Только совместный анализ механизмов разрушения разнообразных структур и измерения их неоднородности могут выявить структурные и металлургические факторы, контролирующие различия в процессах разрушения конструкционных сталей при номинально однотипных структурах. Это обеспечит гарантии качества материалов.

Спасибо за внимание!